Skip to main content
Log in

Galerkin finite element method and error analysis for the fractional cable equation

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The cable equation is one of the most fundamental equations for modeling neuronal dynamics. These equations can be derived from the Nernst-Planck equation for electro-diffusion in smooth homogeneous cylinders. Fractional cable equations are introduced to model electrotonic properties of spiny neuronal dendrites. In this paper, a Galerkin finite element method(GFEM) is presented for the numerical simulation of the fractional cable equation(FCE) involving two integro-differential operators. The proposed method is based on a semi-discrete finite difference approximation in time and Galerkin finite element method in space. We prove that the numerical solution converges to the exact solution with order O(τ+h l+1) for the lth-order finite element method. Further, a novel Galerkin finite element approximation for improving the order of convergence is also proposed. Finally, some numerical results are given to demonstrate the theoretical analysis. The results show that the numerical solution obtained by the improved Galerkin finite element approximation converges to the exact solution with order O(τ 2+h l+1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baeumer, B., Kovács, M., Meerschaert, M.: Numerical solutions for fractional reaction-diffusion equations. Comput. Math. Appl. 55, 2212–2226 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bisquert, J.: Fractional diffusion in the multiple-trapping regime and revision of the equivalence with the continuous-time random walk. Phys. Rev. Lett. 91(4), 010602 (2003)

    Article  Google Scholar 

  3. Bernardi, C., Maday, Y.: Approximations Spectrales de Problems aux Limites Elliptiques. Springer, Berlin (1992)

    Google Scholar 

  4. Chen, C.-M., Liu, F., Turner, I., Anh, V.: A Fourier method for the fractional diffusion equation describing sub-diffusion. J. Comp. Phys. 227, 886–897 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, C.-M., Liu, F., Turner, I., Anh, V.: A new Fourier analysis method for the Galilei invariant fractional advection diffusion equation. ANZIAM J. 48, C605—C619 (2007)

    MathSciNet  Google Scholar 

  6. Cuesta, E., Lubich, C., Palencia, C.: Convolution quadrature time discretization of fractional diffusive-wave equations. Math. Comput. 75, 673C696 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Deng, W.: Finite element method for the space and time fractional Fokker-Planck equation. SIAM J. Num. Anal. 47, 204–226

  8. Henry, B.I., Langlands, T.A.M.: Fractional cable models for spiny neuronal dendrites. Phys. Rev. Lett. 100(2008), 128103 (2008)

    Article  Google Scholar 

  9. Langlands, T.T.A.M., Henry, B.I., Wearne, S.L.: Fractional cable equation models for anomalous electrodiffusion in nerve cells: infinite domain solutions. J. Math. Biol. 59, 761–808 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Langlands, T.A.M., Henry, B.I., Wearne, S.: Solution of a fractional cable equation: Infinite case, http://www.maths.unsw.edu.au/applied/files/2005/amr05-34.pdf

  11. Langlands, T.A.M., Henry, B.I., Wearne, S.: Solution of a fractional cable equation: Finite case, http://www.maths.unsw.edu.au/applied/files/2005/amr05-33.pdf

  12. Langlands, T.A.M., Henry, B.I.: The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comp. Phys. 205, 719–736 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Li, C., Zhao, Z., Chen, Y.: Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion. Comput. Math. Appl. 62, 855–875 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comp. Phys. 225, 1533–1552 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. McLean, William, Mustapha, Kassem: Convergence analysis of a discontinuous Galerkin method for a sub-diffusion equaiton. Numer. Algor. 52, 69–88 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lin, Y., Li, X., Xu, C.: Finite difference/spectral approximations for the fractional cable equation. Math. Comput. 80, 1369–1396 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu, F., Anh, V., Turner, I.: Numerical solution of the space fractional Fokker-Planck equation. J. Comp. Appl. Math. 166, 209–219 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu, F., Anh, V., Turner, I., Zhuang, P.: Numerical solution for the solute transport in fractal porous media. ANZIAM J. 45(E), 461–473 (2004)

    MathSciNet  MATH  Google Scholar 

  19. Liu, Q., Liu, F., Turner, I., Anh, V.: Approximation of the Lévy-Feller advection-dispersion process by random walk and finite difference method. J. Comp. Phys. 222, 57–70 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu, F., Yang, C., Burrage, K.: Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term. J. Comp. Appl. Math. 231, 160–176 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Metzler, R., Compte, A.: Generalized diffusion-advection schemes and dipersive sedimentation: a fractional approach. J. Phys. Chem. B 104, 3858–3865 (2000)

    Article  Google Scholar 

  22. Meerschaert, M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comp. Appl. Math. 172, 65–77 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Meerschart, M.M., Scalas, E.: Coupled continuous time random walks in finance. Physica A 70, 114–118 (2006)

    Article  MathSciNet  Google Scholar 

  24. Rall, W.: Branching dendritic trees and motoneuron membrane resistivity. Exp. Neurol. 1, 491–527 (1959)

    Article  Google Scholar 

  25. Rall, W.: Core conductor theory and cable properties of neurons. In: Kandel, E., Geiger, S. (eds.) Handbook of Physiology. American Physiological Society, Washington (1977)

  26. Rall, W.: Cable theory for dendritic neurons. In: Koch, C., Segev, I. (eds.) Methods in Neuronal Modeling. MIT Press, Cambridge (1989)

  27. Roop, J.P.: Computational aspects of FEM approximation of fractional advection dispersion equation on bounded domains in R 2. J. Comp. Appl. Math. 193, 243–268 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach (1993)

  29. Santamaria, F., Wils, S., De Schutter, E., Augustine, G.J.: Anomalous diffusion in Purkinje cell dendrites caused by spines. Neuron 52, 635–648 (2006)

    Article  Google Scholar 

  30. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin (2006)

    MATH  Google Scholar 

  31. Yuste, S.B., Acedo, L., Lindenberg, K.: Reaction front in an \(A+B\rightarrow C\) reaction-subdiffusion process. Phys. Rev. E 69, 036126 (2004)

    Article  Google Scholar 

  32. Yuste, S.B., Acedo, L.: An explicit finite difference method and a new Von Neumann-type stability analysis for fractional diffusion equations. SIAM J. Num. Anal. 42, 1862–1874 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zheng, Y., Li, C., Zhao, Z.: A note on the finite element method for the space-fractional advection diffusion equation. Comput. Math. Appl. 59, 1718–1726 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhuang, P., Liu, F., Anh, V., Turner, I.: New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation. SIAM J. Num. Anal. 46, 1079–1095 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuang, P., Liu, F., Turner, I. et al. Galerkin finite element method and error analysis for the fractional cable equation. Numer Algor 72, 447–466 (2016). https://doi.org/10.1007/s11075-015-0055-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-015-0055-x

Keywords

Navigation