Skip to main content
Log in

Easy implementation of advanced tomography algorithms using the ASTRA toolbox with Spot operators

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Mathematical scripting languages are commonly used to develop new tomographic reconstruction algorithms. For large experimental datasets, high performance parallel (GPU) implementations are essential, requiring a re-implementation of the algorithm using a language that is closer to the computing hardware. In this paper, we introduce a new MATLAB interface to the ASTRA toolbox, a high performance toolbox for building tomographic reconstruction algorithms. By exposing the ASTRA linear tomography operators through a standard MATLAB matrix syntax, existing and new reconstruction algorithms implemented in MATLAB can now be applied directly to large experimental datasets. This is achieved by using the Spot toolbox, which wraps external code for linear operations into MATLAB objects that can be used as matrices. We provide a series of examples that demonstrate how this Spot operator can be used in combination with existing algorithms implemented in MATLAB and how it can be used for rapid development of new algorithms, resulting in direct applicability to large-scale experimental datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ASTRA - Tomographic Reconstruction toolbox. http://sourceforge.net/p/astra-toolbox/. [Online; accessed 1-March-2015] (2015)

  2. Agulleiro, J.I., Fernandez, J.J.: Fast tomographic reconstruction on multicore computers. Bioinformatics 27(4), 582–583 (2011)

    Article  Google Scholar 

  3. Andersen, A.H., Kak, A.C.: Simultaneous algebraic reconstruction technique (SART): a superior implementation of the ART algorithm. Ultrason. Imaging 6(1), 81–94 (1984)

    Article  Google Scholar 

  4. Batenburg, K.J., Sijbers, J.: DART: A practical reconstruction algorithm for discrete tomography. IEEE Trans. Image Process 20(9), 2542–2553 (2011)

    Article  MathSciNet  Google Scholar 

  5. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM. J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. van den Berg, E., Friedlander, M.P.: Probing the Pareto frontier for basis pursuit solutions. SIAM J. Sci. Comput. 31(2), 890–912 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. van den Berg, E., Friedlander, M.P.: Spot - a linear-operator toolbox., http://www.cs.ubc.ca/labs/scl/spot/ (2014). [Online; accessed 1-July-2014]

  8. Björck, Å., Elfving, T.: Accelerated projection methods for computing pseudoinverse solutions of systems of linear equations. BIT 19(2), 145–163 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vision 40(1), 120–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chilingaryan, S., Mirone, A., Hammersley, A., Ferrero, C., Helfen, L., Kopmann, A., dos Santos Rolo, T., Vagovic, P.: A GPU-based architecture for real-time data assessment at synchrotron experiments. IEEE Trans. Nucl. Sci. 58(4), 1447–1455 (2011)

    Article  Google Scholar 

  11. De Man, B., Basu, S.: Distance-driven projection and backprojection in three dimensions. Phys. Med. Biol. 49(11), 2463–2475 (2004)

    Article  Google Scholar 

  12. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. B Methodol., 1–38 (1977)

  13. Donoghue, P.C.J., Bengtson, S., Dong, X., Gostling, N.J., Huldtgren, T., Cunningham, J.A., Yin, C., Yue, Z., Peng, F., Stampanoni, M.: Synchrotron X-ray tomographic microscopy of fossil embryos. Nature 442(7103), 680–683 (2006)

    Article  Google Scholar 

  14. Figueiredo, M.A.T., Nowak, R.D., Wright, S.J.: Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems. IEEE J. Sel. Topics Signal Process 1(4), 586–597 (2007)

    Article  Google Scholar 

  15. Gilbert, P.: Iterative methods for the three-dimensional reconstruction of an object from projections. J. Theoret. Biol. 36(1), 105–117 (1972)

    Article  Google Scholar 

  16. Goldstein, T., Osher, S.: The split Bregman method for L1-regularized problems. SIAM J. Imaging Sci. 2(2), 323–343 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gordon, R., Bender, R., Herman, G.T.: Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography. J. Theoret. Biol. 29(3), 471–481 (1970)

    Article  Google Scholar 

  18. Gregor, J., Benson, T.: Computational analysis and improvement of SIRT. IEEE Trans. Med. Imag. 27(7), 918–924 (2008)

    Article  Google Scholar 

  19. Guedouar, R., Zarrad, B.: A comparative study between matched and mis-matched projection/back projection pairs used with ASIRT reconstruction method. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers. Detectors and Associated Equipment 619(1), 225–229 (2010)

    Article  Google Scholar 

  20. Guedouar, R., Zarrad, B.: A new reprojection method based on a comparison of popular reprojection models. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers. Detectors and Associated Equipment 619 (1), 270–275 (2010)

    Article  Google Scholar 

  21. Hu, Q., Ley, M.T., Davis, J., Hanan, J.C., Frazier, R., Zhang, Y.: 3D chemical segmentation of fly ash particles with X-ray computed tomography and electron probe microanalysis. Fuel 116, 229–236 (2014)

    Article  Google Scholar 

  22. Jang, B., Kaeli, D., Do, S., Pien, H.: Multi GPU implementation of iterative tomographic reconstruction algorithms. In: Biomedical Imaging: From Nano to Macro, 2009. ISBI’09. IEEE International Symposium on, pp. 185–188. IEEE (2009)

  23. Joseph, P.: An improved algorithm for reprojecting rays through pixel images. IEEE Trans. Med. Imag. 1(3), 192–196 (1982)

    Article  Google Scholar 

  24. Kremer, J.R., Mastronarde, D.N., McIntosh, J.R.: Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116(1), 71–76 (1996)

    Article  Google Scholar 

  25. Kübel, C., Voigt, A., Schoenmakers, R., Otten, M., Su, D., Lee, T., Carlsson, A., Bradley, J.: Recent advances in electron tomography: TEM and HAADF-STEM tomography for materials science and semiconductor applications. Microsc. Microanal. 11(5), 378–400 (2005)

    Article  Google Scholar 

  26. Lewitt, R.M.: Alternatives to voxels for image representation in iterative reconstruction algorithms. Phys. Med. Biol. 37(3), 705–716 (1992)

    Article  Google Scholar 

  27. Palenstijn, W.J., Batenburg, K.J., Sijbers, J.: Performance improvements for iterative electron tomography reconstruction using graphics processing units (GPUs). J. Struct. Biol. 176(2), 250–253 (2011)

    Article  Google Scholar 

  28. Palenstijn, W.J., Batenburg, K.J., Sijbers, J.: The ASTRA tomography toolbox. In: 13th International Conference on Computational and Mathematical Methods in Science and Engineering, CMMSE (2013)

  29. Pedemonte, S., Bousse, A., Erlandsson, K., Modat, M., Arridge, S., Hutton, B.F., Ourselin, S.: GPU accelerated rotation-based emission tomography reconstruction. In: Nuclear Science Symposium Conference Record (NSS/MIC), pp. 2657–2661. IEEE (2010)

  30. Rivers, M.L.: tomoRecon: High-speed tomography reconstruction on workstations using multi-threading. In: Proc. SPIE 8506, Developments in X-Ray Tomography VII, p. 85060U (2012)

  31. Schüle, T., Schnörr, C., Weber, S., Hornegger, J.: Discrete tomography by convex–concave regularization and D.C. programming. Discret. Appl. Math. 151 (1), 229–243 (2005)

    Article  MATH  Google Scholar 

  32. Siddon, R.L.: Fast calculation of the exact radiological path for a three-dimensional CT array. Med. Phys. 12(2), 252–255 (1985)

    Article  Google Scholar 

  33. Sidky, E.Y., Jørgensen, J.H., Pan, X.: Convex optimization problem prototyping for image reconstruction in computed tomography with the Chambolle–Pock algorithm. Phys. Med. Biol 57(10), 3065–3091 (2012)

    Article  Google Scholar 

  34. Sidky, E.Y., Pan, X.: Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization. Phys. Med. Biol. 53(17), 4777–4807 (2008)

    Article  Google Scholar 

  35. Slaney, M., Kak, A.: Principles of computerized tomographic imaging. Society for Industrial and Applied Mathematics (1988)

  36. Thielemans, K., Tsoumpas, C., Mustafovic, S., Beisel, T., Aguiar, P., Dikaios, N., Jacobson, M.W.: STIR: software for tomographic image reconstruction release 2. Phys. Med. Biol. 57(4), 867–883 (2012)

    Article  Google Scholar 

  37. Zeng, G.L., Gullberg, G.T.: Unmatched projector/backprojector pairs in an iterative reconstruction algorithm. IEEE Trans. Med. Imaging 19(5), 548–555 (2000)

    Article  Google Scholar 

  38. Zhu, J., Li, X., Ye, Y., Wang, G.: Analysis on the strip-based projectionmodel for discrete tomography. Discrete Applied Mathematics 156(12), 2359–2367 (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Folkert Bleichrodt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bleichrodt, F., van Leeuwen, T., Palenstijn, W.J. et al. Easy implementation of advanced tomography algorithms using the ASTRA toolbox with Spot operators. Numer Algor 71, 673–697 (2016). https://doi.org/10.1007/s11075-015-0016-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-015-0016-4

Keywords

Mathematics Subject Classification (2010)

Navigation