Skip to main content
Log in

Rigorous integration of non-linear ordinary differential equations in chebyshev basis

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we introduce a new approach to multiple step verified integration of non-linear ordinary differential equations. The approach is based on the technique of a Taylor model integration, however, a novel method is introduced to suppress the wrapping effect over several integration steps. This method is simpler and more robust compared to the known methods. It allows more general inputs, while it does not require rigorous matrix inversion. Moreover, our integration algorithm allows the use of various types of underlying function enclosures. We present rigorous arithmetic operations with function enclosures based on the truncated Chebyshev series. Computational experiments are used to show the wrapping effect suppression of our method and to compare integration algorithm that uses Chebyshev function enclosures with the existing algorithms that use function enclosures based on the truncated Taylor series (Taylor models).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auer, E., Rauh, A.: Vericomp: a system to compare and assess verified ivp solvers. Computing 94, 163–172 (2012). doi:10.1007/s00607-011-0178-4

    Article  MATH  MathSciNet  Google Scholar 

  2. Battles, Z., Trefethen, L. N.: An extension of MATLAB to continuous functions and operators. SIAM J. Sci. Comput. 25, 1743–1770 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Berz, M., Makino, K.: Suppression of the wrapping effect by Taylor model-based verified integrators: long-term stabilization by shrink wrapping. Int. J. Differ. Equ. Appl. 10 (4), 385–403 (2005)

    MathSciNet  Google Scholar 

  4. Boyd, J.P.: Chebyshev and Fourier Spectral Methods, p. 688. Courier Dover Publications, New York (2001)

  5. Brisebarre, N., Joldeş, M.: Chebyshev interpolation polynomial-based tools for rigorous computing. In: Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation, ISSAC ’10, pp. 147–154. ACM, New York (2010)

  6. Camacho, C., De Figueiredo, L. H.: The dynamics of the jouanolou foliation on the complex projective 2-space. Ergodic Theory Dyn. Syst. 5 (21), 757–766 (2001)

    MathSciNet  Google Scholar 

  7. Clenshaw, C. W.: A note on the summation of Chebyshev series. MTAC 9, 118–120 (1955)

    MATH  MathSciNet  Google Scholar 

  8. Corliss, G. F.: Guaranteed error bounds for ordinary differential equations. In: Theory of Numerics in Ordinary and Partial Differential Equations, pp. 1–75. Oxford University Press (1994)

  9. De Figueiredo, L. H., Stolfi, J.: Affine arithmetic: concepts and applications. Numer. Algorithm. 37 (1–4), 147–158 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dekker, T.: A floating-point technique for extending the available precision. Numer. Math. 18, 224–242 (1971/72)

    Article  MathSciNet  Google Scholar 

  11. Dzetkulič, T.: ODEIntegrator. http://odeintegrator.sourceforge.net, 2012. Software package

  12. Eble, I.: ber Taylor-Modelle. PhD thesis, Institut fr Angewandte und Numerische Mathematik (2007)

  13. Henzinger, T. A., Horowitz, B., Majumdar, R., Wong-Toi, H.: Beyond HyTech: hybrid systems analysis using interval numerical methods. In: Lynch, N., Krogh, B. (eds.) Proceedings of the HSCC’00, vol. 1790 of LNCS, pp. 130–144, Springer (2000)

  14. IEEE Standards Board: IEEE standard for binary floating-point arithmetic. Technical report, The Institute of Electrical and Electronics Engineers. Technical Report IEEE Std 754–1985 (1985)

  15. Kühn, W.: Rigorously computed orbits of dynamical systems without the wrapping effect. Computing 61 (1), 47–67 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lohner, R. J.: Enclosing the solutions of ordinary initial and boundary value problems. In: Computer Arithmetic: Scientific Computation and Programming Languages, pp. 255–286. Teubner, Stuttgart (1987)

  17. Lohner, R.J.: Computations of guaranteed enclosures for the solutions of ordinary initial and boundary value problems. In: Cash, J., Gladwell, I. (eds.) Computational Ordinary Differential Equationas, pp. 425–435. Clarendon Press, Oxford (1992)

  18. Makino, K., Berz, M.: Taylor models and other validated functional inclusion methods. Int. J. Pur. Appl. Math. 4 (4), 379–456 (2003)

    MATH  MathSciNet  Google Scholar 

  19. Makino, K., Berz, M.: Suppression of the wrapping effect by Taylor model-based verified integrators: long-term stabilization by preconditioning. Int. J. Differ. Equ. Appl. 10 (4), 353–384 (2005)

    MATH  MathSciNet  Google Scholar 

  20. Makino, K., Berz, M.: Suppression of the wrapping effect by Taylor model-based verified integrators: the single step. Int. J. Pur. Appl. Math. 36 (2), 175–197 (2006)

    MathSciNet  Google Scholar 

  21. Makino, K., Berz, M.: Rigorous integration of flows and ODEs using Taylor models. Symb. Numer. Comput., 79–84 (2009)

  22. Moore, R. E.: Interval analysis. Prentice hall, Englewood cliffs (1966)

    MATH  Google Scholar 

  23. Moore, R. E., Kearfott, R. B., Cloud, M. J.: Introduction to interval analysis. SIAM (2009)

  24. Nedialkov, N. S., Jackson, K. R., Corliss, G. F.: Validated solutions of initial value problems for ordinary differential equations. Appl. Math. Comput. 105, 21–68 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  25. Ratschan, S., She, Z.: Safety verification of hybrid systems by constraint propagation-based abstraction refinement. ACM Trans. Embed. Comput. Syst. 6 (1) (2007)

  26. Rauh, A., Hofer, E. P., Valencia-ivp, E. Auer.: A comparison with other initial value problem solvers. In: Proceedings of the 12th GAMM - IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics, SCAN ’06, pp. 36–. IEEE Computer Society, Washington (2006)

  27. Tucker, W.: A rigorous ODE solver and Smale’s 14th problem. Found. Comput. Math. 2 (1), 53–117 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  28. Wittig, A., Berz, M.: Rigorous high precision interval arithmetic in COSY INFINITY. In: Proceedings of the Fields Institute (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomáš Dzetkulič.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dzetkulič, T. Rigorous integration of non-linear ordinary differential equations in chebyshev basis. Numer Algor 69, 183–205 (2015). https://doi.org/10.1007/s11075-014-9889-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-014-9889-x

Keywords

Navigation