Skip to main content
Log in

A double-projection-based algorithm for large-scale nonlinear systems of monotone equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we propose a derivative free algorithm for solving large-scale nonlinear systems of monotone equations which combines a new idea of projection methodology with a line search strategy, while an improvement in the projection step is exerted. At each iteration, the algorithm constructs two appropriate hyperplanes which strictly separate the current approximation from the solution set of the problem. Then the new approximation is determined by projecting the current point onto the intersection of two halfspaces that are constructed by these hyperplanes and contain the solution set of the problem. Under some mild conditions, the global convergence of the algorithm is established. Preliminary numerical results indicate that the proposed algorithm is promising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahookhosh, M., Amini, K., Bahrami, S.: Two derivative-free projection approaches for systems of large-scale nonlinear monotone equations. Numer. Algoritm. 64, 21–42 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  2. Barzilai, J., Borwein, J.M.: Two-point step size gradient methods. IMA J. Numer. Anal. 8, 141–148 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  3. Buhmiler, S., Krejić, N., Lužanin, Z.: Practical quasi-Newton algorithms for singular nonlinear systems. Numer. Algoritm. 55, 481–502 (2010)

    Article  MATH  Google Scholar 

  4. Cheng, W.: A PRP type method for systems of monotone equations. Math. Comput. Model. 50, 15–20 (2009)

    Article  MATH  Google Scholar 

  5. Dennis, J.E.: On the convergence of Broyden’s method for nonlinear systems of equations. Math. Comput. 25(115), 559–567 (1971)

    MATH  MathSciNet  Google Scholar 

  6. Dennis, J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice-Hall, Englewood Cliffs (1983)

    MATH  Google Scholar 

  7. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Kanzow, C., Yamashita, N., Fukushima, M.: Levenberg–Marquardt methods for constrained nonlinear equations with strong local convergence properties. J. Comput. Appl. Math. 172, 375–397 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. La Cruz, W., Martínez, J.M., Raydan, M.: Spectral residual method without gradient information for solving large-scale nonlinear systems of equations. Math. Comput. 75, 1429–1448 (2006)

    Article  MATH  Google Scholar 

  10. La Cruz, W., Raydan, M.: Nonmonotone spectral methods for large-scale nonlinear systems. Optim. Meth. Softw. 18, 583–599 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Levenberg, K.: A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 2, 164–166 (1944)

    MATH  MathSciNet  Google Scholar 

  12. Li, Q., Li, D.H.: A class of derivative-free methods for large-scale nonlinear monotone equations. IMA J. Numer. Anal. 31, 1625–1635 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970)

    MATH  Google Scholar 

  14. Solodov, M.V., Svaiter, B.F.: A globally convergent inexact Newton method for systems of monotone equations. In: Fukushima, M., Qi, L. (eds.) Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods, pp. 355–369. Kluwer Academic Publishers, The Netherland (1998)

  15. Yan, Q.R., Peng, X.Z., Li, D.H.: A globally convergent derivative-free method for solving large-scale nonlinear monotone equations. J. Comput. Appl. Math. 234, 649–657 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Zarantonello, E.H.: Projections on convex sets in Hilbert space and spectral theory. In: Zarantonello, E.H. (ed.) Contributions to Nonlinear Functional Analysis.Academic Press, New York (1971)

  17. Zhang, L., Zhou, W.J.: Spectral gradient projection method for solving nonlinear monotone equations. J. Comput. Appl. Math. 196, 478–484 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Zhao, Y.B., Li, D.: Monotonicity of fixed point and normal mappings associated with variational inequality and its application. SIAM J. Optim. 11, 962–973 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  19. Zhou, G., Toh, K.C.: Superlinear convergence of a Newton-type algorithm for monotone equations. J. Optim. Theory Appl. 125, 205–221 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Zhou, W.J., Li, D.H.: Limited memory BFGS method for nonlinear monotone equations. J. Comput. Math. 25, 89–96 (2007)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keyvan Amini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amini, K., Kamandi, A. & Bahrami, S. A double-projection-based algorithm for large-scale nonlinear systems of monotone equations. Numer Algor 68, 213–228 (2015). https://doi.org/10.1007/s11075-014-9841-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-014-9841-0

Keywords

Navigation