Skip to main content
Log in

A comparison of iterative methods to solve complex valued linear algebraic systems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Complex valued linear algebraic systems arise in many important applications. We present analytical and extensive numerical comparisons of some available numerical solution methods. It is advocated, in particular for large scale ill-conditioned problems, to rewrite the complex-valued system in real valued form leading to a two-by-two block system of particular form, for which it is shown that a very efficient and robust preconditioned iterative solution method can be constructed. Alternatively, in many cases it turns out that a simple preconditioner in the form of the sum of the real and the imaginary part of the matrix also works well but involves complex arithmetic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. van Rienen, U.: Numerical methods in computational electrodynamics. Linear systems in practical applications. Springer–Verlag, Berlin Heidelberg (2001)

    Book  MATH  Google Scholar 

  2. Kormann, K.: Efficient and reliable simulation of quantum molecular dynamics. Ph.D. Thesis, Uppsala University. http://uu.diva-portal.org/smash/record.jsf?pid=diva2:549981

  3. Novikov, S., Manakov, S.V., Pitaevskiĭ, L.P., Zakharov, V.E.: Theory of Solitons. The Inverse Scattering Method. Translated from Russian. Contemporary Soviet Mathematics. Consultants Bureau [Plenum], New York (1984)

  4. Butcher, J.C.: Integration processes based on Radau quadrature formulas. Math. Comp. 18, 233–244 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  5. Axelsson, O.: On the efficiency of a class of A–stable methods. BIT 14, 279–287 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  6. Day, D., Heroux, M.A.: Solving complex-valued linear systems via equivalent real formulations. SIAM J. Sci. Comput. 23, 480–498 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Benzi, M., Bertaccini, D.: Block preconditioning of real–valued iterative algorithms for complex linear systems. SIAM J. Numer. Anal. 28, 598–618 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Giovangiglia, V., Grailleb, B.: Projected iterative algorithms for complex symmetric systems arising in magnetized multicomponent transport. Linear Algebra Appl. 430, 1404–1422 (2009)

    Article  MathSciNet  Google Scholar 

  9. Howle, V.E., Vavasis, S.A.: An iterative method for solving complex-symmetric systems arising in electrical power modeling. SIAM J. Matrix Anal. Appl. 26, 1150–1178 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bai, Z.-Z., Benzi, M., Chen, F., Wang, Z.-Q.: Preconditioned MHSS iteration methods for a class of block two-by-two linear systems with applications to distributed control problems. IMA J. Numer. Anal. 33, 343–369 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  11. Axelsson, O., Kucherov, A.: Real valued iterative methods for solving complex symmetric linear systems. Numer. Linear Algebra Appl. 7, 197–218 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  12. Saad, Y., Schultz, M.H.: GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 7, 856–869 (1986). doi:10.1137/0907058

    Article  MATH  MathSciNet  Google Scholar 

  13. Saad, Y.: A flexible inner-outer preconditioned GMRES algorithm. SIAM, J. Sci. Comp. 14, 461–469 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  14. Axelsson, O., Vassilevski, P.S.: A black box generalized conjugate gradient solver with inner iterations and variable–step preconditioning. SIAM J. Matrix Anal. Appl. 12, 625–644 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  15. Vassilevski, P.S.: Multilevel Block Factorization Preconditioners: Matrix-Based Analysis and Algorithms for Solving Finite Element Equations. Springer, New York (2008)

    Google Scholar 

  16. Bai, Z.-Z., Golub, G.H., Ng, M.K.: Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. SIAM J. Matrix Anal. Appl. 24, 603–626 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. Bai, Z.-Z., Golub, G.H., Ng, M.K.: On successive-overrelaxation acceleration of the Hermitian and skew-Hermitian splitting iterations. Numer. Linear Algebra Appl. 14, 319–335 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. Bai, Z.-Z., Benzi, M., Chen, F.: Modified HSS iteration methods for a class of complex symmetric linear systems. Computing 87, 93–111 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  19. Bai, Z.-Z., Benzi, M., Chen, F.: On preconditioned MHSS iteration methods for complex symmetric linear systems. Numer. Algoritm. 56, 297–317 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  20. Axelsson, O., Bai, Z.-Z., Qiu, S.-X.: A class of nested iteration schemes for linear systems with a coefficient matrix with a dominant positive definite symmetric part. Numer. Algoritm. 35, 351–372 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  21. Barrett, R., Berry, M., Chan, T.F., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C., van der Vorst, H.: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd edn. SIAM, Philadelphia (1994)

    Google Scholar 

  22. Freund, R.W.: Conjugate gradient–type methods for linear systems with complex symmetric coefficient matrices. SIAM J. Sci. Statist. Comput. 13, 425–448 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  23. van der Vorst, H., Melissen, J.: A Petrov–Galerkin type method for solving Ax = b where A is symmetric complex. IEEE Trans. Magn. 26, 706–708 (1990)

    Article  Google Scholar 

  24. Freund, R.W., Nachtigal, N.M.: QMR: a quasi-minimal residual method for non-Hermitian linear systems. Numer. Math. 60, 315–339 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  25. Freund, R.W.: A transpose-free quasi-minimum residual algorithm for non-Hermitian linear systems. SIAM J. Sci. Comput. 14, 470–482 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  26. Pearson, J.W., Wathen, A.J.: A new approximation of the Schur complement in preconditioners for PDE-constrained optimization. Numer. Linear Algebra Appl. 19, 816–829 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  27. Axelsson, O.: Iterative Solution Methods. Cambridge University Press, Cambridge (1994)

  28. Axelsson, O., Boyanova, P., Kronbichler, M., Neytcheva, M., Wu, X.: Numerical and computational efficiency of solvers for two-phase problems. Comput. Math. Appl. (2012). Published on line at doi:10.1016/j.camva.2012.05.020

  29. Kormann, K., Larsson, E.: An RBF-Galerkin Approach to the Time-Dependent Schrödinger Equation. Department of Information Technology, Uppsala University, TR 2012–024 (2012)

  30. The University of Florida Sparse Matrix Collection, maintained by T. Davis and Y. Hu, http://www.cise.ufl.edu/research/sparse/matrices/

  31. Notay, Y.: AGMG software and documentation; see http://homepages.ulb.ac.be/~ynotay/AGMG

  32. Napov, A., Notay, Y.: An algebraic multigrid method with guaranteed convergence rate. SIAM J. Sci. Comput. 34, A1079–A1109 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  33. Notay, Y.: Aggregation-based algebraic multigrid for convection-diffusion equations. SIAM J. Sci. Comput. 34, A2288–A2316 (2012)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maya Neytcheva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Axelsson, O., Neytcheva, M. & Ahmad, B. A comparison of iterative methods to solve complex valued linear algebraic systems. Numer Algor 66, 811–841 (2014). https://doi.org/10.1007/s11075-013-9764-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-013-9764-1

Keywords

Navigation