Skip to main content
Log in

On linearly related orthogonal polynomials in several variables

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Let \(\{\mathbb{P}_{n}\}_{n\ge 0}\) and \(\{\mathbb{Q}_{n}\}_{n\ge 0}\) be two monic polynomial systems in several variables satisfying the linear structure relation \(\mathbb{Q}_{n} = \mathbb{P}_{n} + M_{n} \mathbb{P}_{n-1}, \quad n\ge 1,\)where M n are constant matrices of proper size and \(\mathbb{Q}_{0} = \mathbb{P}_{0}\). The aim of our work is twofold. First, if both polynomial systems are orthogonal, characterize when that linear structure relation exists in terms of their moment functionals. Second, if one of the two polynomial systems is orthogonal, study when the other one is also orthogonal. Finally, some illustrative examples are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions. 9th printing. Dover, New York (1972)

    Google Scholar 

  2. Alfaro, M., Marcellán, F., Peña, A., Rezola, M.L.: On linearly related orthogonal polynomials and their functionals. J. Math. Anal. Appl. 287, 307–319 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alfaro, M., Marcellán, F., Peña, A., Rezola, M.L.: When do linear combinations of orthogonal polynomials yield new sequences of orthogonal polynomials. J. Comput. Appl. Math. 233, 1446–1452 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  4. Alfaro, M., Peña, A., Petronilho, J., Rezola, M.L.: Orthogonal polynomials generated by a linear structure relation: inverse problem. J. Math. Anal. Appl. 401, 182–197 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  5. Alfaro, M., Peña, A., Rezola, M.L., Marcellán, F.: Orthogonal polynomials associated with an inverse quadratic spectral transform. Comput. Math. Appl. 61, 888–900 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  6. Beardon, H., Driver, K.A.: The zeros of linear combinations of orthogonal polynomials. J. Approx. Theory 137, 179–186 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Berens, H., Schmid, H., Xu, Y.: Multivariate Gaussian cubature formula. Arch. Math. 64, 26–32 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  8. Brezinski, C., Driver, K.A., Redivo–Zaglia, M.: Quasi–orthogonality with applications to some families of classical orthogonal polynomials. Appl. Numer. Math. 48, 157–168 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chihara, T.S.: An introduction to orthogonal polynomials. Gordon and Breach, New York (1978)

    MATH  Google Scholar 

  10. Delgado, A.M., Fernández, L., Pérez, T.E., Piñar, M.A.: On the Uvarov modification of two variable orthogonal polynomials on the disk. Complex Anal. Oper. Theory 6, 665–676 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  11. Delgado, A.M., Fernández, L., Pérez, T.E., Piñar, M.A., Xu, Y.: Orthogonal polynomials in several variables for measures with mass points. Numer. Algorithms 55, 245–264 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  12. Delgado, A.M., Geronimo, J.S., Iliev, P., Xu, Y.: On a two–variable class of Bernstein–Szegő Measures. Constr. Approx. 30, 71–91 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. Driver, K.A., Jordaan, K.: Zeros of linear combinations of Laguerre polynomials from different sequences. J. Comput. Appl. Math. 233, 719–722 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Dunkl, C.F., Xu, Y.: Orthogonal polynomials of several variables. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  15. Fernández, L., Pérez, T.E., Piñar, M.A., Xu, Y.: Krall–type orthogonal polynomials in several variables. J. Comput. Appl. Math. 233, 1519–1524 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Horn, R.A., Johnson, C.R.: Matrix analysis. Cambridge University Press, Cambridge (1985)

    Book  MATH  Google Scholar 

  17. Iserles, A., Koch, P.E., Nørsett, S.P., Sanz–Serna, J.M.: On polynomials orthogonal with respect to certain Sobolev inner products. J. Approx. Theory 65, 151–175 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  18. Koornwinder, T.H.: Two variable analogues of the classical orthogonal polynomials. In: Askey, R. (ed.) Theory and application of special functions, pp. 435–495. Academic Press, New York (1975)

  19. Marcellán, F., Maroni, P.: Sur l’adjonction d’une masse de Dirac à une forme régulière et semi–classique. Ann. Mat. Pura Appl. 162, 1–22 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  20. Marcellán, F., Petronilho, J.: Orthogonal polynomials and coherent pairs: the classical case. Indag. Math. (N.S.) 6, 287–307 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  21. Maroni, P.: Une théorie algébrique des polynômes orthogonaux. Applications aux polynômes orthogonaux semi–classiques. IMACS Ann. Comput. Appl. Math. 9, 95–130 (1991)

    MathSciNet  Google Scholar 

  22. Meijer, H.G.: Determination of all coherent pairs. J. Approx. Theory 89, 321–343 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  23. Morrow, C.R., Patterson, T.N.L.: Construction of algebraic cubature rules using polynomial ideal theory. SIAM J. Numer. Anal. 15, 953–976 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  24. Mysovskikh, I.P. Interpolation cubature formulas. (In Russian) Nauka, Moscow (1981)

  25. Pérez, T.E., Piñar, M.A., Xu, Y.: Weighted Sobolev orthogonal polynomials on the unit ball. J. Approx. Theory 171, 84–104 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  26. Schmid, H.: On cubature formulae with a minimum number of knots. Numer. Math. 31, 281–297 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  27. Schmid, H., Xu, Y.: On bivariate Gaussian cubature formulae. Proc. Amer. Math. Soc. 122, 833–841 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  28. Shohat, J.A.: On mechanical quadratures, in particular, with positive coefficients. Trans. Am. Math. Soc. 42, 461–496 (1937)

    Article  MathSciNet  Google Scholar 

  29. Szegő, G.: Orthogonal Polynomials, vol. 23, 4th edn. American Mathematical Social Colloquium Publishing, Providence (1978)

  30. Xu, Y.: Gaussian cubature and bivariate polynomial interpolation. Math. Comp. 59, 547–555 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  31. Xu, Y.: On zeros of multivariate quasi–orthogonal polynomials and Gaussian cubature formulae. SIAM J. Math. Anal. 25, 991–1001 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  32. Xu, Y.: A family of Sobolev orthogonal polynomials on the unit ball. J. Approx. Theory 138, 232–241 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  33. Zhedanov, A.: Rational spectral transformations and orthogonal polynomials. J. Comput. Appl. Math. 85, 67–86 (1997)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Peña.

Additional information

Manuel Alfaro, Ana Peña, M. Luisa Rezola were partially supported by MEC of Spain under Grant MTM2012–36732–C03–02 and Diputación General de Aragón project E–64.

Teresa E. Pérez was partially supported by MICINN of Spain and by the European Regional Development Fund (ERDF) through the grant MTM2011–28952–C02–02, and Junta de Andalucía FQM–0229, P09–FQM–4643 and P11-FQM-7276.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alfaro, M., Peña, A., Pérez, T.E. et al. On linearly related orthogonal polynomials in several variables. Numer Algor 66, 525–553 (2014). https://doi.org/10.1007/s11075-013-9747-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-013-9747-2

Keywords

Mathematics Subject Classifications (2010)

Navigation