Skip to main content
Log in

Control of error in the homotopy analysis of solutions to the Zakharov system with dissipation

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We apply the method of homotopy analysis to the Zakharov system with dissipation in order to obtain analytical solutions, treating the auxiliary linear operator as a time evolution operator. Evolving the approximate solutions in time, we construct approximate solutions which depend on the convergence control parameters. In the situation where solutions are strongly coupled, there will be multiple convergence control parameters. In such cases, we will pick the convergence control parameters to minimize a sum of squared residual errors. We explain the error minimization process in detail, and then demonstrate the method explicitly on several examples of the Zakharov system held subject to specific initial data. With this, we are able to efficiently obtain approximate analytical solutions to the Zakharov system of minimal residual error using approximations with relatively few terms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zakharov, V.E.: Collapse of Langmuir waves. J. Exp. Theor. Phys. 35, 908–914 (1972)

    Google Scholar 

  2. Marklund, M.: Classical and quantum kinetics of the Zakharov system. Phys. Plasmas 12, 082110 (2005)

    Article  MathSciNet  Google Scholar 

  3. Fedele, R., Shukla, P.K., Onorato, M., Anderson, D., Lisak, M.: Landau damping of partially incoherent Langmuir waves. Phys. Lett., A 303, 61–66 (2002)

    Article  Google Scholar 

  4. Ginibre, J., Tsutsumi, Y., Velo, G.: On the Cauchy problem for the Zakharov system. J. Funct. Anal. 151, 384–436 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bourgain, J., Colliander, J.: On wellposedness of the Zakharov system. Int. Math. Res. Not. 11, 515–546 (1996)

    Article  MathSciNet  Google Scholar 

  6. Pecher, H.: An improved local well-posedness result for the one-dimensional Zakharov system. J. Math. Anal. Appl. 342, 1440–1454 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hadouaj, H., Malomed, B.A., Maugin, G.A.: Dynamics of a soliton in a generalized Zakharov system with dissipation. Phys. Rev., A 44, 3925 (1991) 284

    Article  MathSciNet  Google Scholar 

  8. Malomed, B., Anderson, D., Lisak, M., Quiroga-Teixeiro, M.L., Stenflo, L.: Dynamics of solitary waves in the Zakharov model equations. Phys. Rev., E 55, 962 (1997)

    Article  Google Scholar 

  9. Borhanifar, A., Kabir, M.M., Maryam Vahdat, L.: New periodic and soliton wave solutions for the generalized Zakharov system and (2+ 1)-dimensional Nizhnik–Novikov–Veselov system. Chaos, Solitons Fractals 42, 1646–1654 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dai, Z., Huang, J., Jiang, M.: Explicit homoclinic tube solutions and chaos for Zakharov system with periodic boundary. Phys. Lett., A 352, 411–415 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jin, S., Markowich, P.A., Zheng, C.: Numerical simulation of a generalized Zakharov system. J. Comput. Phys. 201, 376–395 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bao, W., Sun, F., Wei, G.W.: Numerical methods for the generalized Zakharov system. J. Comput. Phys. 190, 201–228 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Liao, S.J.: On the proposed homotopy analysis techniques for nonlinear problems and its application. Ph.D. dissertation, Shanghai Jiao Tong University (1992)

  14. Liao, S.J.: Beyond Perturbation: Introduction to the Homotopy Analysis Method. Chapman & Hall/CRC Press, Boca Raton (2003)

    Book  Google Scholar 

  15. Liao, S.J.: An explicit, totally analytic approximation of Blasius viscous flow problems. Int. J. Non-Linear Mech. 34, 759–778 (1999) 300

    Article  MATH  Google Scholar 

  16. Liao, S.J.: On the homotopy analysis method for nonlinear problems. Appl. Math. Comput. 147, 499–513 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liao, S.J., Tan, Y.: A general approach to obtain series solutions of nonlinear differential equations. Stud. Appl. Math. 119, 297–354 (2007)

    Article  MathSciNet  Google Scholar 

  18. Liao, S.J.: Notes on the homotopy analysis method: some definitions and theorems. Commun. Nonlinear Sci. Numer. Simulat. 14, 983–997 (2009)

    Article  MATH  Google Scholar 

  19. Van Gorder, R.A., Vajravelu, K.: On the selection of auxiliary functions, operators, and convergence control parameters in the application of the Homotopy Analysis Method to nonlinear differential equations: a general approach. Commun. Nonlinear Sci. Numer. Simulat. 14, 4078–4089 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liao, S.: An optimal homotopy-analysis approach for strongly nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simulat. 15, 2315–2332 (2010)

    Google Scholar 

  21. Liao, S.J.: Homotopy Analysis Method in Nonlinear Differential Equations. Springer & Higher Education Press, Heidelberg and Beijing (2012)

    Book  MATH  Google Scholar 

  22. Van Gorder, R.A.: Control of error in the homotopy analysis of semi-linear elliptic boundary value problems. Numer. Algorithms 61, 613–629 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Abbasbandy, S.: The application of homotopy analysis method to nonlinear equations arising in heat transfer. Phys. Lett., A 360, 109–113 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Abbasbandy, S.: Homotopy analysis method for heat radiation equations. Int. Commun. Heat Mass Transf. 34, 380–387 (2007)

    Article  MathSciNet  Google Scholar 

  25. Liao, S.J., Su, J., Chwang, A.T.: Series solutions for a nonlinear model of combined convective and radiative cooling of a spherical body. Int. J. Heat Mass Transfer 49, 2437–2445 (2006)

    Article  MATH  Google Scholar 

  26. Liao, S.J., Campo, A.: Analytic solutions of the temperature distribution in Blasius viscous flow problems. J. Fluid Mech. 453, 411–425 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Liao, S.J.: An explicit, totally analytic approximation of Blasius viscous flow problems. Int. J. Non-linear Mech. 34, 759–778 (1999)

    Article  MATH  Google Scholar 

  28. Liao, S.J.: A uniformly valid analytic solution of 2D viscous flow past a semi-infinite flat plate. J. Fluid Mech. 385, 101–128 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. Liao, S.J.: On the analytic solution of magnetohydrodynamic flows of non-Newtonian fluids over a stretching sheet. J. Fluid Mech. 488, 189–212 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Akyildiz, F.T., Vajravelu, K., Mohapatra, R.N., Sweet, E., Van Gorder, R.A.: Implicit Differential Equation Arising in the Steady Flow of a Sisko Fluid. Appl. Math. Comput. 210, 189–196 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hang, X., Lin, Z.L., Liao, S.J., Wu, J.Z., Majdalani, J.: Homotopy based solutions of the Navier-Stokes equations for a porous channel with orthogonally moving walls. Phys. Fluids 22, 053601 (2010)

    Article  Google Scholar 

  32. Sajid, M., Hayat, T., Asghar, S.: Comparison between the HAM and HPM solutions of thin film flows of non-Newtonian fluids on a moving belt. Nonlinear Dyn. 50, 27–35 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Hayat, T., Sajid, M.: On analytic solution for thin film flow of a fourth grade fluid down a vertical cylinder. Phys. Lett., A 361, 316–322 (2007)

    Article  MATH  Google Scholar 

  34. Turkyilmazoglu, M.: Purely analytic solutions of the compressible boundary layer flow due to a porous rotating disk with heat transfer. Phys. Fluids 21, 106104 (2009)

    Article  Google Scholar 

  35. Abbasbandy, S., Zakaria, F.S.: Soliton solutions for the fifth-order KdV equation with the homotopy analysis method. Nonlinear Dyn. 51, 83–87 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wu, W., Liao, S.J.: Solving solitary waves with discontinuity by means of the homotopy analysis method. Chaos, Solitons Fractals 26, 177–185 (2005)

    Article  MATH  Google Scholar 

  37. Sweet, E., Van Gorder, R.A.: Analytical solutions to a generalized Drinfel’d - Sokolov equation related to DSSH and KdV6. Appl. Math. Comput. 216, 2783–2791 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wu, Y., Wang, C., Liao, S.J.: Solving the one-loop soliton solution of the Vakhnenko equation by means of the homotopy analysis method. Chaos, Solitons Fractals 23, 1733–1740 (2005)

    MathSciNet  MATH  Google Scholar 

  39. Cheng, J., Liao, S.J., Mohapatra, R.N., Vajravelu, K.: Series solutions of Nano-boundary-layer flows by means of the homotopy analysis method. J. Math. Anal. Appl. 343, 233–245 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  40. Van Gorder, R.A., Sweet, E., Vajravelu, K.: Nano boundary layers over stretching surfaces. Commun. Nonlinear Sci. Numer. Simulat. 15, 1494–1500 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Bataineh, A.S., Noorani, M.S.M., Hashim, I.: Solutions of time-dependent Emden-Fowler type equations by homotopy analysis method. Phys. Lett., A 371, 72–82 (2007)

    Article  MATH  Google Scholar 

  42. Bataineh, A.S., Noorani, M.S.M., Hashim, I.: Homotopy analysis method for singular IVPs of Emden-Fowler type. Commun. Nonlinear Sci. Numer. Simulat. 14, 1121–1131 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  43. Van Gorder, R.A., Vajravelu, K.: Analytic and numerical solutions to the Lane-Emden equation. Phys. Lett., A 372, 6060–6065 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  44. Liao, S.: A new analytic algorithm of Lane-Emden type equations. Appl. Math. Comput. 142, 1–16 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  45. Turkyilmazoglu, M.: Numerical and analytical solutions for the flow and heat transfer near the equator of an MHD boundary layer over a porous rotating sphere. Int. J. Therm. Sci. 50, 831–842 (2011)

    Article  Google Scholar 

  46. Turkyilmazoglu, M.: Solution of the Thomas-Fermi equation with a convergent approach. Commun. Nonlinear Sci. Numer. Simulat. 17, 4097–4103 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  47. Turkyilmazoglu, M.: An effective approach for approximate analytical solutions of the damped Duffing equation. Phys. Scr. 86, 015301 (2012)

    Article  Google Scholar 

  48. Turkyilmazoglu, M.: The Airy equation and its alternative analytic solution. Phys. Scr. 86, 055004 (2012)

    Article  Google Scholar 

  49. Van Gorder, R.A.: Analytical method for the construction of solutions to the Föppl - von Kármán equations governing deflections of a thin flat plate. Int. J. Non-linear Mech. 47, 1–6 (2012)

    Article  Google Scholar 

  50. Van Gorder, R.A.: Gaussian waves in the Fitzhugh-Nagumo equation demonstrate one role of the auxiliary function H(x) in the homotopy analysis method. Commun. Nonlinear Sci. Numer. Simulat. 17, 1233–1240 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  51. Ghoreishi, M., Ismail, A.I.B., Alomari, A.K., Bataineh, A.S.: The comparison between Homotopy Analysis Method and Optimal Homotopy Asymptotic Method for nonlinear age-structured population models. Commun. Nonlinear Sci. Numer. Simulat. 17, 1163–1177 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  52. Abbasbandy, S., Shivanian, E., Vajravelu, K.: Mathematical properties of h-curve in the frame work of the homotopy analysis method. Commun. Nonlinear Sci. Numer. Simulat. 16, 4268–4275 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Van Gorder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mallory, K., Van Gorder, R.A. Control of error in the homotopy analysis of solutions to the Zakharov system with dissipation. Numer Algor 64, 633–657 (2013). https://doi.org/10.1007/s11075-012-9683-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-012-9683-6

Keywords

Navigation