Skip to main content

Advertisement

Log in

Time-varying stiffness method for extracting the frequency–energy dependence in the nonlinear dynamical systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this work, a time-varying stiffness method is proposed for extracting highly accurate approximation for the fundamental backbone branches of the frequency–energy plot from the numerical simulation response of the nonlinear dynamical system. The purely nonlinear duffing oscillator with a nonnegative real power restoring force is firstly considered to develop the method, and later the method is applied to linear systems attached with a nonlinear energy sink for more demonstration. The systems of concern are numerically simulated at an arbitrary high level of initial input energy to apply the proposed method. Accordingly, the obtained responses of these systems are employed via the proposed time-varying stiffness method to extract an approximation for the fundamental backbone branches in the frequency–energy plot. The obtained backbones have been found in excellent agreement with the exact backbones of the considered systems. Even though these approximate backbones have been obtained for only one high energy level, they are valid for any other initial energy below that level. In addition, they are not affected by the damping variations in the considered systems. The proposed method is found to be applicable to well approximate the fundamental backbone branches of the large-scale nonlinear dynamical systems. The frequency–amplitude dependences have been also studied here for the considered systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Nayfeh, A.H.: Perturbation Methods. Wiley, New York (1973)

    MATH  Google Scholar 

  2. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)

    MATH  Google Scholar 

  3. Luo, A.C.J., Huang, J.: Approximate solutions of periodic motions in nonlinear systems via a generalized harmonic balance. J. Vib. Control 18(11), 1661–1674 (2011)

    Article  MathSciNet  Google Scholar 

  4. Beléndez, A., Hernández, A., Márquez, A., Beléndez, T., Neipp, C.: Analytical approximations for the period of a nonlinear pendulum. Eur. J. Phys. 27(3), 539–551 (2006)

    Article  MATH  Google Scholar 

  5. Beléndez, A., Hernández, A., Beléndez, T., Álvarez, M.L., Gallego, S., Ortuño, M., Neipp, C.: Application of the harmonic balance method to a nonlinear oscillator typified by a mass attached to a stretched wire. J. Sound Vib. 302(4–5), 1018–1029 (2007)

    Article  Google Scholar 

  6. Sun, W.P., Wu, B.S., Lim, C.W.: Approximate analytical solutions for oscillation of a mass attached to a stretched elastic wire. J. Sound Vib. 300(3), 1042–1047 (2007)

    Article  MATH  Google Scholar 

  7. Durmaz, S., Demirbağ, S.A., Kaya, M.O.: Approximate solutions for nonlinear oscillation of a mass attached to a stretched elastic wire. Comput. Math. Appl. 61(3), 578–585 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Mickens, R.E.: Comments on the method of harmonic balance. J. Sound Vib. 94, 456–460 (1984)

    Article  Google Scholar 

  9. Beléndez, A., Beléndez, T., Márquez, A., Neipp, C.: Application of He’s homotopy perturbation method to conservative truly nonlinear oscillators. Chaos Solitons Fractals 37(3), 770–780 (2008)

    Article  MATH  Google Scholar 

  10. Cveticanin, L.: Homotopy-perturbation method for pure nonlinear differential equation. Chaos Solitons Fractals. 30(5), 1221–1230 (2006)

    Article  MATH  Google Scholar 

  11. Beléndez, A., Beléndez, T., Neipp, C., Hernández, A., Álvarez, M.L.: Approximate solutions of a nonlinear oscillator typified as a mass attached to a stretched elastic wire by the homotopy perturbation method. Chaos Solitons Fractals 39(2), 746–764 (2009)

    Article  MATH  Google Scholar 

  12. Cveticanin, L.: Analytical methods for solving strongly non-linear differential equations. J. Sound Vib. 214(2), 325–338 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cveticanin, L.: Pure odd-order oscillators with constant excitation. J. Sound Vib. 330(5), 976–986 (2011)

    Article  MathSciNet  Google Scholar 

  14. Brennan, M.J., Kovacic, I., Carrella, A., Waters, T.P.: On the jump-up and jump-down frequencies of the Duffing oscillator. J. Sound Vib. 318(4), 1250–1261 (2008)

    Article  Google Scholar 

  15. Burton, T.D.: On the amplitude decay of strongly non-linear damped oscillators. J. Sound Vib. 87(4), 535–541 (1983)

    Article  MATH  Google Scholar 

  16. Yuste, S.B., Bejarano, J.D.: Amplitude decay of damped non-linear oscillators studied with Jacobian elliptic functions. J. Sound Vib. 114(1), 33–44 (1987)

    Article  MATH  Google Scholar 

  17. Mickens, R.E.: A generalized iteration procedure for calculating approximations to periodic solutions of truly nonlinear oscillators. J. Sound Vib. 287(4–5), 1045–1051 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Salenger, G., Vakakis, A.F., Gendelman, O., Manevitch, L., Andrianov, I.: Transitions from strongly to weakly nonlinear motions of damped nonlinear oscillators. Nonlinear Dyn. 20(2), 99–114 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Andrianov, I.V., Awrejcewicz, J.: Asymptotical behavior of a system with damping and high power-form non-linearity. J. Sound Vib. 267, 1169–1174 (2003)

    Article  MATH  Google Scholar 

  20. Gottlieb, H.P.W.: Frequencies of oscillators with fractional-power non-linearities. J. Sound Vib. 261(3), 557–566 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Cveticanin, L.: Oscillator with fraction order restoring force. J. Sound Vib. 320(4), 1064–1077 (2009)

    Article  MathSciNet  Google Scholar 

  22. Rakaric, Z., Kovacic, I.: Approximations for motion of the oscillators with a non-negative real-power restoring force. J. Sound Vib. 330(2), 321–336 (2011)

    Article  Google Scholar 

  23. Vakakis, A.F., Gendelman, O.V., Kerschen, G., Bergman, L.A., McFarland, D.M., Lee, Y.S.: Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems, I and II. Springer, Berlin (2008)

    MATH  Google Scholar 

  24. Peeters, M., Viguié, R., Sérandour, G., Kerschen, G., Golinval, J.C.: Nonlinear normal modes, Part II: toward a practical computation using numerical continuation techniques. Mech. Syst. Signal Process. 23(1), 195–216 (2009)

    Article  Google Scholar 

  25. Kerschen, G., Peeters, M., Golinval, J.C.: Nonlinear normal modes, Part I: a useful framework for the structural dynamicits. Mech. Syst. Signal Process. 23, 170–194 (2009)

    Article  Google Scholar 

  26. Renson, L., Kerschen, G., Cochelin, B.: Numerical computation of nonlinear normal modes in mechanical engineering. J. Sound Vib. 364, 177–206 (2016)

    Article  Google Scholar 

  27. Akhavan, H., Ribeiro, P.: Free geometrically nonlinear oscillations of perfect and imperfect laminates with curved fibres by the shooting method. Nonlinear Dyn. 81(1–2), 949–965 (2015)

    Article  Google Scholar 

  28. Kerschen, G., Kowtko, J.J., McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Theoretical and experimental study of multimodal targeted energy transfer in a system of coupled oscillators. Nonlinear Dyn. 47(1–3), 285–309 (2007)

    MathSciNet  MATH  Google Scholar 

  29. Tsakirtzis, S., Panagopoulos, P.N., Kerschen, G., Gendelman, O., Vakakis, A.F., Bergman, L.A.: Complex dynamics and targeted energy transfer in linear oscillators coupled to multi-degree-of-freedom essentially nonlinear attachments. Nonlinear Dyn. 48(3), 285–318 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kerschen, G., Vakakis, A.F., Lee, Y.S., Mcfarland, D.M., Kowtko, J.J., Bergman, L.A.: Energy transfers in a system of two coupled oscillators with essential nonlinearity: 1: 1 resonance manifold and transient bridging orbits. Nonlinear Dyn. 42(3), 283–303 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sigalov, G., Gendelman, O.V., Al-Shudeifat, M.A., Manevitch, L.I., Vakakis, A.F., Bergman, L.A.: Resonance captures and targeted energy transfers in an inertially-coupled rotational nonlinear energy sink. Nonlinear Dyn. 69(4), 1693–1704 (2012)

    Article  MathSciNet  Google Scholar 

  32. AL-Shudeifat, M.A.: Analytical formulas for the energy, velocity and displacement decays of purely nonlinear damped oscillators. J. Vib. Control 21(6), 1210–1219 (2013)

    Article  MathSciNet  Google Scholar 

  33. AL-Shudeifat, M.A.: Amplitudes decay in different kinds of nonlinear oscillators. J. Vib. Acoust. 137(3), 031012 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad A. AL-Shudeifat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AL-Shudeifat, M.A. Time-varying stiffness method for extracting the frequency–energy dependence in the nonlinear dynamical systems. Nonlinear Dyn 89, 1463–1474 (2017). https://doi.org/10.1007/s11071-017-3528-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3528-8

Keywords

Navigation