Skip to main content
Log in

Experimental and theoretical study on a building structure controlled by multi-dimensional earthquake isolation and mitigation devices

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Multi-dimensional earthquake isolation and mitigation device (MEIMD) is a newly developed structural vibration control device. First, the horizontal and vertical property tests are performed to study the influences of excitation frequency and displacement amplitude on the dynamic properties of the MEIMD. In order to accurately describe the nonlinear characteristics of the device caused by the complex viscoelasticity, an integrated mathematical model based on fractional-derivative equivalent standard solid model is then proposed. Next, the horizontal and vertical shaking table tests on a 1/5-scale three-story steel frame structure equipped with and without the MEIMDs are presented, respectively. Finally, a dynamic response analysis method considering the nonlinearity of the MEIMD is proposed to analyze the dynamic responses of the controlled structure. The analysis results show that the MEIMD can provide excellent horizontal isolation ability, and good vertical isolation performance can be achieved through selecting reasonable pre-pressure value of the springs. The proposed mathematical model and dynamic response analysis method can effectively describe the nonlinearity of the MEIMDs and the structure with MEIMDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Housner, G., Bergman, L.A., Caughey, T.K., Chassiakos, A.G., Claus, R.O., Masri, S.F., Yao, J.T.: Structural control: past, present, and future. J. Eng. Mech. 123(9), 897–971 (1997)

    Article  Google Scholar 

  2. Spencer Jr., B.F., Nagarajaiah, S.: State of the art of structural control. J. Struct. Eng. 129(7), 845–856 (2003)

    Article  Google Scholar 

  3. Ramallo, J.C., Johnson, E.A., Spencer Jr., B.F.: “Smart” base isolation systems. J. Eng. Mech. 128(10), 1088–1099 (2002)

    Article  Google Scholar 

  4. Vu, B., Unal, M., Warn, G.P., Memari, A.M.: A distributed flexibility and damping strategy to control vertical accelerations in base-isolated buildings. Struct. Control Health Monit. 21(4), 503–521 (2014)

    Article  Google Scholar 

  5. Yazici, H., Guclu, R., Kucukdemiral, I.B., Parlakci, M.A.: Robust delay-dependent \(\text{ H }\infty \) control for uncertain structural systems with actuator delay. J. Dyn. Syst. Meas. Control 134(3), 1–15 (2012)

    Article  Google Scholar 

  6. Yazici, H., Güçlü, R.: Active vibration control of seismic excited structural system using LMI-based mixed \(\text{ H2/H }\infty \) state feedback controller. Turk. J. Electr. Eng. Comput. Sci. 19(6), 839–849 (2011)

    Google Scholar 

  7. Yazici, H., Azeloglu, C., Kucukdemiral, I.: Active vibration control of container cranes against earthquake by the use of delay-dependent \(\text{ H }\infty \) controller under consideration of actuator saturation. J. Low Freq. Noise Vib. Act. Control 33(3), 289–316 (2014)

    Article  Google Scholar 

  8. Cui, S., Bruneau, M., Kasalanati, A.: Behavior of bidirectional spring unit in isolated floor systems. J. Struct. Eng. 136(8), 944–952 (2010)

    Article  Google Scholar 

  9. Suy, H.M.R., Fey, R.H.B., Galanti, F.M.B., Nijmeijer, H.: Nonlinear dynamic analysis of a structure with a friction-based seismic base isolation system. Nonlinear Dyn. 50(3), 523–538 (2007)

    Article  MATH  Google Scholar 

  10. Vemuru, V.S.M., Nagarajaiah, S., Masroor, A., Mosqueda, G.: Dynamic lateral stability of elastomeric seismic isolation bearings. J. Struct. Eng. 140(8), A4014014 (2014)

    Article  Google Scholar 

  11. Xu, Z.D., Guo, Y.F., Wang, S.A., Huang, X.H.: Optimization analysis on parameters of multi-dimensional earthquake isolation and mitigation device based on genetic algorithm. Nonlinear Dyn. 72(4), 757–765 (2013)

    Article  Google Scholar 

  12. Tatemichi, I., Kawaguchi, M.: A new approach to seismic isolation: possible application in space structures. Int. J. Sp. Struct. 15(2), 145–154 (2000)

    Article  Google Scholar 

  13. Guo, P.F., Lang, Z.Q., Peng, Z.K.: Analysis and design of the force and displacement transmissibility of nonlinear viscous damper based vibration isolation systems. Nonlinear Dyn. 67(4), 2671–2687 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Guclu, R., Yazici, H.: Vibration control of a structure with ATMD against earthquake using fuzzy logic controllers. J. Sound Vib. 318(1), 36–49 (2008)

    Article  Google Scholar 

  15. Lewandowski, R., Bartkowiak, A., Maciejewski, H.: Dynamic analysis of frames with viscoelastic dampers: a comparison of damper models. Struct. Eng. Mech. 41(1), 113–137 (2012)

    Article  Google Scholar 

  16. Hüffmann, G.K.: Full base isolation for earthquake protection by helical springs and viscodampers. Nucl. Eng Des. 84(3), 331–338 (1985)

    Article  Google Scholar 

  17. Makris, N., Deoskar, H.S.: Prediction of observed response of base-isolated structure. J. Struct. Eng. 122(5), 485–493 (1996)

    Article  Google Scholar 

  18. Suhara, J., Tamura, T., Okada, Y., Umeki, K.: Development of three dimensional seismic isolation device with laminated rubber bearing and rolling seal type air spring. In: Proceeding of ASME Pressure Vessels and Piping Conf. Vancouver, BC, Canada (2002)

  19. Warn, G.P., Whittaker, A.S., Constantinou, M.C.: Vertical stiffness of elastomeric and lead-rubber seismic isolation bearings. J. Struct. Eng. 133(9), 1227–1236 (2007)

    Article  Google Scholar 

  20. Okamura, S., Kamishima, Y., Negishi, K., Sakamoto, Y., Kitamura, S., Kotake, S.: Seismic isolation design for JSFR. J. Nucl. Sci. Technol. 48(4), 688–692 (2011)

    Article  Google Scholar 

  21. Ismail, M., Rodellar, J., Ikhouane, F.: An innovative isolation device for aseismic design. Eng. Struct. 32(4), 1168–1183 (2010)

    Article  Google Scholar 

  22. Fujita, S., Minagawa, K., Miyazaki, M., Tanaka, G., Takahashi, O.: Research and development of intelligent seismic isolation system using air bearing. In: Proceedings of ASME Pressure Vessels and Piping Conf. Chicago, Illinois (2008)

  23. Fujita, S., Minagawa, K., Tanaka, G., Shimosaka, H.: Intelligent seismic isolation system using air bearings and earthquake early warning. Soil Dyn. Earthq. Eng. 31(2), 223–230 (2011)

    Article  Google Scholar 

  24. Zhou, Z., Wong, J., Mahin, S.: Potentiality of using vertical and three-dimensional isolation systems in nuclear structures. Nucl. Eng. Technol. 48, 1237-125 (2016)

    Article  Google Scholar 

  25. Zhang, R.H., Soong, T.T.: Seismic design of viscoelastic dampers for structural applications. J. Struct. Eng. 118(5), 1375–1392 (1992)

    Article  Google Scholar 

  26. White, S.W., Kim, S.K., Bajaj, A.K., Davies, P., Showers, D.K.: Experimental techniques and identification of nonlinear and viscoelastic properties of flexible polyurethane foam. Nonlinear Dyn. 22(3), 281–313 (2000)

    Article  MATH  Google Scholar 

  27. Lin, G., Feeny, B.F., Das, T.: Fractional derivative reconstruction of forced oscillators. Nonlinear Dyn. 55(3), 239–250 (2009)

  28. De Espındola, J.J., da Silva Neto, J.M., Lopes, E.M.: A generalised fractional derivative approach to viscoelastic material properties measurement. Appl. Math. Comput. 164(2), 493–506 (2005)

    MATH  Google Scholar 

  29. Tsai, C.S.: Temperature effect of viscoelastic dampers during earthquakes. J. Struct. Eng. 120(2), 394–409 (1994)

    Article  Google Scholar 

  30. Shen, K.L., Soong, T.T.: Modeling of viscoelastic dampers for structural applications. J. Eng. Mech. 121(6), 694–701 (1995)

    Article  Google Scholar 

  31. Xu, Z.D., Zeng, X., Huang, X.H., Lu, L.H.: Experimental and numerical studies on new multi-dimensional earthquake isolation and mitigation device: horizontal properties. Sci. China Technol. Sci. 53(10), 2658–2667 (2010)

    Article  Google Scholar 

  32. Xu, Z.D., Lu, L.H., Shi, B., Yuan, F.: Experimental and numerical studies on vertical properties of a new multi-dimensional earthquake isolation and mitigation device. Shock Vib. 20(3), 401–410 (2013)

    Article  Google Scholar 

  33. Christensen, R.M.: Theory of Viscoelasticity. Dover Publ, New York (2010)

    Google Scholar 

  34. Xu, Z.D., Wang, D.X., Shi, C.F.: Model, tests and application design for viscoelastic dampers. J. Vib. Control 17(9), 1359–1370 (2011)

    Article  Google Scholar 

  35. Xu, Z.D., Liao, Y.X., Ge, T., Xu, C.: Experimental and theoretical study of viscoelastic dampers with different matrix rubbers. J. Eng. Mech. 142(8), 04016051 (2016)

    Article  Google Scholar 

  36. Lindley, P.B.: Natural rubber structural bearings. ACI Spec. Publ. 70, 353–378 (1981)

    Google Scholar 

  37. Enelund, M., Fenander, A., Olsson, P.: Fractional integral formulation of constitutive equations of viscoelasticity. AIAA J. 35(8), 1356–1362 (1997)

    Article  MATH  Google Scholar 

  38. Wei, Z., Shimizu, N.: Numerical algorithm for dynamic problems involving fractional operators. JSME Int J. Ser. C. 41(3), 364–370 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

Financial supports for this research are provided by the National Science Foundation for Distinguished Young Scholars of China (51625803), National Natural Science Foundation of China (11572088), the Key Research and Development Plan of Jiangsu Province (BE2015158), the Science and Technological Innovation Leading Young Talents Program of the Ministry of Science and Technology, the Priority Academic Program Development of Jiangsu Higher Education Institutions and the Excellent Dissertation and Innovative Talent Training Foundation of Southeast University (CE02-1-50), China. These supports are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao-Dong Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, ZD., Gai, PP., Zhao, HY. et al. Experimental and theoretical study on a building structure controlled by multi-dimensional earthquake isolation and mitigation devices. Nonlinear Dyn 89, 723–740 (2017). https://doi.org/10.1007/s11071-017-3482-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3482-5

Keywords

Navigation