Skip to main content
Log in

Lump solution and integrability for the associated Hirota bilinear equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper studies lump solution and integrability for the associated Hirota bilinear equation. The integrability in the sense of Lax pair and the bilinear Bäcklund transformations is presented by the binary Bell polynomial method. The lump solution is derived when the period of complexiton solution goes to infinite. Conversely, complexiton solution can also be derived from the lump solution. Complexiton solution is a superposition structure of lump solutions. The dynamics of the lump solution are investigated and exhibited mathematically and graphically. These results further supplement and enrich the theories for the associated Hirota bilinear equation. It is hoped that these results might provide us with useful information on the dynamics of the relevant fields in nonlinear science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering, vol. 149. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  2. Jin, J.H.: Multiple solutions of the Kirchhoff-type problem in \(R^{N}\). Appl. Math. Nonlinear Sci. 1, 229–238 (2016)

    Article  Google Scholar 

  3. Dai, Z.D., Liu, J., Liu, Z.J.: Exact periodic kink-wave and degenerative soliton solutions for potential Kadomtsev–Petviashvili equation. Commun. Nonlinear Sci. Numer. Simul. 15, 2331–2336 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Wang, C.J.: Dynamic behavior of traveling waves for the Sharma–Tasso–Olver equation. Nonlinear Dyn. 85, 1119–1126 (2016)

    Article  MathSciNet  Google Scholar 

  5. Xu, Z., Chen, H., Jiang, M., Dai, Z., Chen, W.: Resonance and deflection of multi-soliton to the (2+1)-dimensional Kadomtsev–Petviashvili equation. Nonlinear Dyn. 78, 461–466 (2014)

    Article  MathSciNet  Google Scholar 

  6. Ma, W.X., Zhu, Z.N.: Solving the (3+1)-dimensional generalized KP and BKP equations by the multiple exp-function algorithm. Appl. Math. Comput. 218, 11871–11879 (2012)

    MathSciNet  MATH  Google Scholar 

  7. Singh, J., Kumar, D., Kıçıman, A.: Numerical solutions of nonlinear fractional partial differential equations arising in spatial diffusion of biological populations. Abstr. Appl. Anal. 2014, 535793 (2014). doi:10.1155/2014/535793

    MathSciNet  Google Scholar 

  8. Kumar, D., Singh, J., Baleanu, D.: Numerical computation of a fractional model of differential-difference equation. J. Comput. Nonlinear Dyn. 11, 061004 (2016)

    Article  Google Scholar 

  9. Kumar, D., Singh, J., Kumar, S.: A fractional model of Navier–Stokes equation arising in unsteady flow of a viscous fluid. J. Assoc. Arab Univ. Basic Appl. Sci. 17, 14–19 (2015)

    Google Scholar 

  10. Singh, J., Kumar, D., Nieto, J.J.: A reliable algorithm for local fractional Tricomi equation arising in fractal transonic flow. Entropy 18, 206 (2016)

    Article  MathSciNet  Google Scholar 

  11. Vishwanath, B.A., Shankar Naik, B., Mahesh Kumar, N.: Multigrid method for the solution of EHL line contact with bio-based oils as lubricants. Appl. Math. Nonlinear Sci. 1, 359–368 (2016)

  12. Imai, K.: Dromion and lump solutions of the Ishimori-I equation. Prog. Theor. Phys. 98, 1013–1023 (1997)

    Article  Google Scholar 

  13. Ma, W.X.: Lump solutions to the Kadomtsev–Petviashvili equation. Phys. Lett. A 379, 1975–1978 (2015)

    Article  MathSciNet  Google Scholar 

  14. Ma, W.X., Qin, Z.Y., L, X.: Lump solutions to dimensionally reduced p-gKP and p-gBKP equations. Nonlinear Dyn. 84, 923–931 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lü, X., Ma, W.X.: Study of lump dynamics based on a dimensionally reduced Hirota bilinear equation. Nonlinear Dyn. 85, 1217–1222 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bell, E.T.: Exponential polynomials. Ann. Math. 35, 258–277 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ma, W.X.: Bilinear equations and resonant solutions characterized by Bell polynomials. Rep. Math. Phys. 72, 41–56 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ma, W.X.: Trilinear equations, Bell polynomials, and resonant solutions. Front. Math. China 8, 1139–1156 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lü, X., Tian, B., Qi, F.H.: Bell-polynomial construction of Bäcklund transformations with auxiliary independent variable for some soliton equations with one Tau-function. Nonlinear Anal. Real World Appl. 13, 1130–1138 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Singh, M., Gupta, R.K.: Bäcklund transformations, Lax system, conservation laws and multisoliton solutions for Jimbo–Miwa equation with Bell polynomials. Commun. Nonlinear Sci. Numer. Simul. 37, 362–373 (2016)

    Article  MathSciNet  Google Scholar 

  21. Ma, W.X.: Complexiton solutions to the Korteweg–de Vries equation. Phys. Lett. A 301, 35–44 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ma, W.X.: Complexiton solutions to integrable equations. Nonlinear Anal. 63, e2461–e2471 (2005)

    Article  MATH  Google Scholar 

  23. Chow, K.W., Wu, C.F.: The superposition of algebraic solitons for the modified Korteweg–de Vries equation. Commun. Nonlinear Sci. Numer. Simul. 19, 49–52 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jeffrey, A., Zwillenger, D.: Table of Integrals, Series and Products. Academic Press, New York (2014)

    Google Scholar 

Download references

Acknowledgements

The author would like to express his sincere thanks to referees for their enthusiastic guidance and help. This work is supported by the National Natural Science Foundation of China (Grant Nos. 11501266, 11661047) and the Fund for Fostering Talents in Kunming University of Science and Technology (No: KKSY201403049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanjian Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C. Lump solution and integrability for the associated Hirota bilinear equation. Nonlinear Dyn 87, 2635–2642 (2017). https://doi.org/10.1007/s11071-016-3216-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3216-0

Keywords

Navigation