Skip to main content
Log in

The chaotic dynamics of high-dimensional systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper introduced a new method to exploit chaotic, sparse representations of nonlinear time series data. The methodology of the algorithm included two steps. First, the proposed method applied the fractal theory to estimate optimal dimension in a compressive sensing of a time series, and sparse data were concentrated on a pseudo-orbit trajectory. Second, the chaotic trajectory was extracted from the data obtained from the first step by employing a chaos prediction method. To verify the efficiency of the proposed method, the algorithm is applied to three categories, consisting of chaotic noise reduction, signal compression, and image compression. The experimental results indicated that the proposed method outperformed other state-of-the-art methods with up to a 95% reduction in errors. Moreover, the results demonstrated that sparse, chaotic representation was most effective in signal and image compression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. http://users.ece.gatech.edu/sasif/homotopy.

  2. http://www.lx.it.pt/~mtf/SpaRSA.

  3. http://yall1.blogs.rice.edu.

References

  1. Yokoya, N., Iwasaki, A.: Object detection based on sparse representation and Hough voting for optical remote sensing imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8(5), 2053–2062 (2015)

  2. Qian, C., Xu, Z.: Robust visual tracking via sparse representation under subclass discriminant constraint. IEEE Trans. Circuits Syst. Video Technol. 26(7), 1293–1307 (2014)

    Article  MathSciNet  Google Scholar 

  3. Su, H., Xing, F., Yang, L.: Robust cell detection of histopathological brain tumor images using sparse reconstruction and adaptive dictionary selection. IEEE Trans. Med. imaging 35(6), 1575–1586 (2016)

    Article  Google Scholar 

  4. Zhou, N., Li, H., Wang, D., Pan, S., Zhou, Z.: Image compression and encryption scheme based on 2D compressive sensing and fractional Mellin transform. Opt. Commun. 343, 10–21 (2015)

    Article  Google Scholar 

  5. Zhou, N., Zhang, A., Zheng, F., Gong, L.: Novel image compression-encryption hybrid algorithm based on key-controlled measurement matrix in compressive sensing. Opt. Laser Technol. 62, 152–160 (2014)

    Article  Google Scholar 

  6. Qaisar, S., Bilal, R.M., Iqbal, W., Naureen, M., Lee, S.: Compressive sensing: from theory to applications, a survey. J. Commun. Netw. 15(5), 443–456 (2013)

    Article  Google Scholar 

  7. Farmer, M.E.: A chaos theoretic analysis of motion and illumination in video sequences. J. Multimed. 2(2), 53–64 (2007)

    Article  Google Scholar 

  8. Gan, C.B., Lei, H.: A new procedure for exploring chaotic attractors in nonlinear dynamical systems under random excitations. Acta Mech. Sin. 27(4), 593–601 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Upadhyay, R.K., Iyengar, S.R.: Introduction to Mathematical Modeling and Chaotic Dynamics. CRC Press, Hoboken (2013)

    MATH  Google Scholar 

  10. Andrievskii, B.R., Fradkov, A.L.: Control of chaos: methods and applications. I. Methods. Autom. Remote Control 64(5), 673–713 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Das, S.: Chaotic patterns in the discrete-time dynamics of social foraging swarms with attractant-repellent profiles: an analysis. Nonlinear Dyn. 82(3), 1399–1417 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Messerotti, M., Zuccarello, F., Guglielmino, S.L., Bothmer, V., Lilensten, J., Noci, G., Storini, G., Lundstedt, H.: Solar weather event modelling and prediction. Space Sci. Rev. 147(3–4), 121–185 (2009)

    Article  Google Scholar 

  13. Wang, X., Liu, C., Xu, D., Liu, C.: Image encryption scheme using chaos and simulated annealing algorithm. Nonlinear Dyn. 84(3), 1417–1429 (2016)

    Article  MathSciNet  Google Scholar 

  14. Mittal, A.K., Singh, U.P., Tiwari, A., Dwivedi, S., Joshi, M.K., Tripathi, K.C.: Short-term predictions by statistical methods in regions of varying dynamical error growth in a chaotic system. Meteorol. Atmos. Phys. 127(4), 457–465 (2015)

    Article  Google Scholar 

  15. Tongue, B.H., Gu, K.: Interpolated cell mapping of dynamical systems. J. Appl. Mech. 55(2), 461–466 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  16. Asif, M.S., Romberg, J.: Sparse recovery of streaming signals using \(\text{ l }_1 \)-homotopy. IEEE Trans. Signal Process. 62(16), 4209–4223 (2014)

    Article  MathSciNet  Google Scholar 

  17. Wu, J., Lu, J., Wang, J.: Application of chaos and fractal models to water quality time series prediction. Environ. Model. Softw. 24(5), 632–636 (2009)

    Article  Google Scholar 

  18. Kulp, C.W.: Detecting chaos in irregularly sampled time series. Chaos Interdiscip. J. Nonlinear Sci. 23(3), 033110 (2013)

    Article  MathSciNet  Google Scholar 

  19. Casdagli, M.: Nonlinear forecasting, chaos and statistics. In: Modeling Complex Phenomena. The seventh Triennial Symposium on Transportation Analysis (TRISTAN VII). pp. 131–152. Springer, New York (1992)

  20. Wang, J., Shi, Q.: Short-term traffic speed forecasting hybrid model based on chaos-wavelet analysis-support vector machine theory. Transp. Res. Part C Emerg. Technol. 27, 219–232 (2013)

    Article  Google Scholar 

  21. Dhanya, C.T.: Nagesh Kumar, D.: Nonlinear ensemble prediction of chaotic daily rainfall. Adv. Water Resour. 33(3), 327–347 (2010)

    Article  MathSciNet  Google Scholar 

  22. An, X., Jiang, D., Zhao, M., Liu, C.: Short-term prediction of wind power using EMD and chaotic theory. Commun. Nonlinear Sci. Numer. Simul. 17(2), 1036–1042 (2012)

    Article  Google Scholar 

  23. Petkov, B.H., Vitale, V., Mazzola, M., Lanconelli, C., Lupi, A.: Chaotic behaviour of the short-term variations in ozone column observed in Arctic. Commun. Nonlinear Sci. Numer. Simul. 26(1), 238–249 (2015)

    Article  Google Scholar 

  24. Li, M.W., Geng, J., Han, D.F., Zheng, T.J.: Ship motion prediction using dynamic seasonal RvSVR with phase space reconstruction and the chaos adaptive efficient FOA. Neurocomputing 174, 661–680 (2016)

    Article  Google Scholar 

  25. Kayacan, E., Ulutas, B., Kaynak, O.: Grey system theory-based models in time series prediction. Expert Syst. Appl. 37(2), 1784–1789 (2010)

    Article  Google Scholar 

  26. Du, H., Smith, L.A.: Rising above chaotic likelihoods. arXiv preprint arXiv:1410.2568

  27. Dabby, D.S.: Musical variations from a chaotic mapping. Chaos Interdiscip. J. Nonlinear Sci. 6(2), 95–107 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  28. Du, H., Leonard, A.S.: Pseudo-orbit data assimilation. Part II: assimilation with imperfect models. J. Atmos. Sci. 71(2), 483–495 (2014)

    Article  Google Scholar 

  29. Bilotta, E., Pantano, P., Stranges, F.: A gallery of Chua attractors. Part I. Int. J. Bifurc. Chaos 17(1), 1–60 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mu, C., Zhang, F., Shu, Y., Zhou, S.: On the boundedness of solutions to the Lorenz-like family of chaotic systems. Nonlinear Dyn. 67(2), 987–996 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Bisaillon, P., Sandhu, R., Khalil, M., Pettit, C., Poirel, D., Sarkar, A.: Bayesian parameter estimation and model selection for strongly nonlinear dynamical systems. Nonlinear Dyn. 82(3), 1061–1080 (2015)

    Article  MathSciNet  Google Scholar 

  32. Khalil, M., Sarkar, A., Adhikari, S.: Nonlinear filters for chaotic oscillatory systems. Nonlinear Dyn. 55(1–2), 113–137 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Du, H., Leonard, A.S.: Pseudo-orbit data assimilation. Part I: the perfect model scenario. J. Atmos. Sci. 71(2), 469–482 (2014)

    Article  Google Scholar 

  34. Liu, Z., Elezzabi, A.Y., Zhao, H.V.: Maximum frame rate video acquisition using adaptive compressed sensing. IEEE Trans. Circuits Syst. Video Technol. 21(11), 1704–1718 (2011)

    Article  Google Scholar 

  35. Malioutov, D.M., Sanghavi, S.R., Willsky, A.S.: Sequential compressed sensing. IEEE J. Sel. Top. Signal Process. 4(2), 435–444 (2010)

    Article  Google Scholar 

  36. Blumensath, T.: Compressed sensing with nonlinear observations and related nonlinear optimization problems. IEEE Trans. Inf. Theory 59(6), 3466–3474 (2013)

    Article  MathSciNet  Google Scholar 

  37. Tillmann, A.M., Pfetsch, M.E.: The computational complexity of the restricted isometry property, the nullspace property and related concepts, in compressed sensing. IEEE Trans. Inf. Theory 60(2), 1248–1259 (2014)

    Article  MathSciNet  Google Scholar 

  38. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  39. Leinonen, M., Codreanu, M., Juntti, M.: Sequential compressed sensing with progressive signal reconstruction in wireless sensor networks. IEEE Trans. Wirel. Commun. 14(3), 1622–1635 (2015)

    Article  Google Scholar 

  40. Sugihara, G., May, R.: Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature 344(6268), 734–741 (1990)

    Article  Google Scholar 

  41. Tsonis, A.A., Elsner, J.B.: Nonlinear prediction as a way of distinguishing chaos from random fractal sequences. Nature 358, 217–220 (1992)

    Article  Google Scholar 

  42. Wales, D.J.: Calculating the rate of loss of information from chaotic time series by forecasting. Nature 350, 485–488 (1991)

  43. Anderson, T.W.: An Introduction to Multivariate Statistical Analysis, vol. 2. Wiley, Hoboken (1958)

    MATH  Google Scholar 

  44. Yang, D., Liu, Z., Zhou, J.: Chaos optimization algorithms based on chaotic maps with different probability distribution and search speed for global optimization. Commun. Nonlinear Sci. Numer. Simul. 19(4), 1229–1246 (2014)

    Article  MathSciNet  Google Scholar 

  45. Fertig, E.J., Harlim, J., Hunt, B.R.: A comparative study of 4D-VAR and a 4D ensemble Kalman filter: perfect model simulations with Lorenz-96. Tellus 59, 96–100 (2007)

    Article  Google Scholar 

  46. Wright, S.J., Nowak, R.D., Figueiredo, M.A.: Sparse reconstruction by separable approximation. IEEE Trans. Signal Process. 57(7), 2479–2493 (2009)

    Article  MathSciNet  Google Scholar 

  47. Yang, J., Zhang, Y.: Alternating direction algorithms for \(\text{ l }_1 \)-problems in compressive sensing. SIAM J. Sci. Comput. 33(1), 250–278 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim Faez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdechiri, M., Faez, K., Amindavar, H. et al. The chaotic dynamics of high-dimensional systems. Nonlinear Dyn 87, 2597–2610 (2017). https://doi.org/10.1007/s11071-016-3213-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3213-3

Keywords

Navigation