Skip to main content
Log in

Application of Newton’s law of motion to constrained mechanical systems possessing configuration manifolds with time-dependent geometric properties

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This study is focused on a class of discrete mechanical systems subject to equality motion constraints involving time and acatastatic terms. In addition, their original configuration manifold possesses time-dependent geometric properties. The emphasis is placed on a proper application of Newton’s law of motion. A key step is to consider the corresponding event manifold, whose dimension is bigger by one than the configuration manifold, since a temporal coordinate is added to the original set of spatial coordinates. Then, its geometric properties are determined and Newton’s law is applied on it, when no motion constraints exist. Next, the way of introducing time dependence in the geometric properties of the configuration manifold through a coordinate transformation in the event manifold is investigated and clarified. Moreover, similar time effects introduced through the motion constraints are also examined. Based on these and application of foliation theory, a geometric definition of a scleronomic manifold is then provided, accompanied by a set of coordinate invariant conditions. The analysis is completed by deriving an appropriate set of equations of motion on the original configuration manifold, when additional constraints are imposed. These equations appear as a system of second-order ordinary differential equations. Finally, the analytical findings are enhanced and illustrated further by considering a selected set of mechanical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Arnold, V.I.: Mathematical Methods of Classical Mechanics, 2nd edn. Springer-Verlag, Berlin (1989)

    Book  Google Scholar 

  2. Bauchau, O.A.: Flexible Multibody Dynamics. Springer Science+Business Media B.V, London (2011)

    Book  MATH  Google Scholar 

  3. Bejancu, A., Farran, H.R.: Foliations and Geometric Structures. Springer, Netherlands (2006)

    MATH  Google Scholar 

  4. Bloch, A.M.: Nonholonomic Mechanics and Control. Springer-Verlag, New York (2003)

    Book  Google Scholar 

  5. Bowen, R.M., Wang, C.-C.: Introduction to Vectors and Tensors, 2nd edn. Dover Publications, Mineola, New York (2008)

    MATH  Google Scholar 

  6. Brüls, O., Cardona, A., Arnold, M.: Lie group generalized-\(\alpha \) time integration of constrained flexible multibody systems. Mechanism and Machine Theory 48, 121–137 (2012)

    Article  Google Scholar 

  7. Bullo, F., Lewis, A.D.: Geometric Control of Mechanical Systems. Springer-Verlag, New York (2005)

    Book  MATH  Google Scholar 

  8. Casey, J.: Geometrical derivation of Lagrange’s equations for a system of particles. Am. J. Phys. 62, 836–847 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Casey, J., O’Reilly, O.M.: Geometrical derivation of Lagrange’s equations for a system of rigid bodies. Math. Mech. Solids 11, 401–422 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chetaev, N.G.: Theoretical Mechanics. Mir Publishers, Moscow (1989)

    MATH  Google Scholar 

  11. Essen, H.: On the geometry of nonholonomic dynamics. ASME J. Appl. Mech. 61, 689–694 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Frankel, T.: The Geometry of Physics: An Introduction. Cambridge University Press, New York (1997)

    MATH  Google Scholar 

  13. Geradin, M., Cardona, A.: Flexible Multibody Dynamics. John Wiley & Sons, New York (2001)

    MATH  Google Scholar 

  14. Glocker, C.: Set-Valued Force Laws. Dynamics of Non-Smooth Systems. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  15. Greenwood, D.T.: Classical Dynamics. Dover Publications, New York (1977)

    Google Scholar 

  16. Lew, A., Marsden, J.E., Ortiz, M., West, M.: Asynchronous variational integrators. Arch. Rational Mech. Anal. 167, 85–146 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lewis, A.D., Murray, R.M.: Variational principles for constrained systems: theory and experiment. Int. J. Non-linear Mech. 30, 793–815 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. Marsden, J.E., Hughes, T.J.R.: Mathematical Foundations of Elasticity. Prentice-Hall, Englewood Cliffs, New Jersey (1983)

    MATH  Google Scholar 

  19. Molino, P.: Riemannian Foliations, Progress in Math. 73, Birkhauser, Boston (1988)

  20. Murray, R.M., Li, Z., Sastry, S.S.: A Mathematical Introduction to Robot Manipulation. CRC Press, Boca Raton, Florida (1994)

    MATH  Google Scholar 

  21. Natsiavas, S., Paraskevopoulos, E.: A set of ordinary differential equations of motion for constrained mechanical systems. Nonlinear Dyn. 79, 1911–1938 (2015)

    Article  MATH  Google Scholar 

  22. Neimark, J.I., Fufaev, N.A.: Dynamics of Nonholonomic Systems, Translations of Mathematical Monographs, vol. 33. American Mathematical Society, Providence (1972)

    MATH  Google Scholar 

  23. O’Reilly, O.M., Srinivasa, A.R.: On a decomposition of generalized constraint forces. Proc. R. Soc. Lond. A 457, 1307–1313 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Papastavridis, J.G.: Tensor Calculus and Analytical Dynamics. CRC Press, Boca Raton (1999)

    Google Scholar 

  25. Paraskevopoulos, E., Natsiavas, S.: A new look into the kinematics and dynamics of finite rigid body rotations using Lie group theory. Int. J. Solids Struct. 50, 57–72 (2013)

    Article  Google Scholar 

  26. Paraskevopoulos, E., Natsiavas, S.: On application of Newton’s law to mechanical systems with motion constraints. Nonlinear Dyn. 72, 455–475 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Paraskevopoulos, E., Natsiavas, S.: Weak formulation and first order form of the equations of motion for a class of constrained mechanical systems. Int. J. Non-linear Mech. 77, 208–222 (2015)

  28. Pars, L.A.: A Treatise on Analytical Dynamics. Heinemann Educational Books, London (1965)

  29. Reinhart, B.L.: Differential Geometry of Foliations. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  30. Rosenberg, R.M.: Analytical Dynamics of Discrete Systems. Plenum Press, New York (1977)

    Book  MATH  Google Scholar 

  31. Shabanov, S.V.: Constrained systems and analytical mechanics in spaces with torsion. J. Phys. A Math. Gen. 31, 5177–5190 (1998)

  32. Simo, J.C., Tarnow, N., Wong, K.K.: Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics. Comp. Meth. Appl. Mech. Eng. 100, 63–116 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  33. Udwadia, F.E., Kalaba, R.E.: A new perspective on constrained motion. Proc. R. Soc. Lond. A 439, 407–410 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  34. Udwadia, F.E., Kalaba, R.E.: Analytical Dynamics a New Approach. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Natsiavas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Natsiavas, S., Paraskevopoulos, E. Application of Newton’s law of motion to constrained mechanical systems possessing configuration manifolds with time-dependent geometric properties. Nonlinear Dyn 85, 2583–2610 (2016). https://doi.org/10.1007/s11071-016-2847-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2847-5

Keywords

Navigation