Skip to main content
Log in

Legendre wavelets Galerkin method for solving nonlinear stochastic integral equations

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, an efficient and accurate computational method based on the Legendre wavelets (LWs) together with the Galerkin method is proposed for solving a class of nonlinear stochastic Itô–Volterra integral equations. For this purpose, a new stochastic operational matrix (SOM) for LWs is derived. A collocation method based on hat functions (HFs) is employed to derive a general procedure for forming this matrix. The LWs and their operational matrices of integration and stochastic Itô-integration and also some useful properties of these basis functions are used to transform such problems into corresponding nonlinear systems of algebraic equations, which can be simply solved to achieve the solution of such problems. Moreover, the efficiency of the proposed method is shown for some concrete examples. The results reveal that the proposed method is very accurate and efficient. Furthermore as some useful applications, the proposed method is applied to obtain approximate solutions for some stochastic problems in the mathematics finance, biology, physics and chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Heydari, M.H., Hooshmandasl, M.R., Ghaini, F.M.M., Fereidouni, F.: Two-dimensional Legendre wavelets for solving fractional Poisson equation with Dirichlet boundary conditions. Eng. Anal. Boundary Elem. 37, 1331–1338 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Sohrabi, S.: Comparison Chebyshev wavelets method with BPFs method for solving Abel’s integral equation. Ain Shams Eng. J. 2, 249–254 (2011)

    Article  Google Scholar 

  3. Canuto, C., Hussaini, M., Quarteroni, A., Zang, T.: Spectral Methods in Fluid Dynamics. Springer, New York (1988)

  4. Spencer, J.B.F., Bergman, L.A.: On the numerical solution on the Fokker–Planck equation for nonlinear stochastic systems. Nonlinear Dyn. 4, 357–372 (1993)

    Article  Google Scholar 

  5. Zeng, C., Yang, Q., Chen, Y.Q.: Solving nonlinear stochastic differential equations with fractional Brownian motion using reducibility approach. Nonlinear Dyn. 67, 2719–2726 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Mamontov, Y.V., Willander, M.: Long asymptotic correlation time for non-linear autonomous itô stochastic differential equation. Nonlinear Dyn. 12, 399–411 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. der Wouw, N.V., Nijmeijer, H., Campen, D.H.V.: A Volterra series approach to the approximation of stochastic nonlinear dynamics. Nonlinear Dyn. 4, 397–409 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Mahmoudkhani, M., Haddadpour, H.: Nonlinear vibration of viscoelastic sandwich plates under narrow-band random excitations. Nonlinear Dyn. 1, 165–188 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Levin, J.J., Nohel, J.A.: On a system of integro-differential equations occurring in reactor dynamics. J. Math. Mech. 9, 347–368 (1960)

    MathSciNet  MATH  Google Scholar 

  10. Miller, R.K.: On a system of integro-differential equations occurring in reactor dynamics. SIAM J. Appl. Math. 14, 446–452 (1966)

    Article  MathSciNet  Google Scholar 

  11. Khodabin, M., Maleknejad, K., Rostami, M., Nouri, M.: Interpolation solution in generalized stochastic exponential population growth model. Appl. Math. Model. 36, 1023–1033 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Oǧuztöreli, M.N.: Time-Lag Control Systems. Academic Press, New York (1966)

    Google Scholar 

  13. Maleknejad, K., Khodabin, M., Rostami, M.: Numerical solutions of stochastic Volterra integral equations by a stochastic operational matrix based on block pulse functions. Math. Comput. Model. 55, 791–800 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Khodabin, M., Maleknejad, K., Rostami, M., Nouri, M.: Numerical approach for solving stochastic Volterra–Fredholm integral equations by stochastic operational matrix. Comput. Math. Appl. 64, 1903–1913 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Maleknejad, K., Khodabin, M., Rostami, M.: A numerical method for solving \(m\)-dimensional stochastic Itô–Volterra integral equations by stochastic operational matrix. Comput. Math. Appl. 63, 133–143 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cao, Y., Gillespie, D., Petzold, L.: Adaptive explicit–implicit tau-leaping method with automatic tau selection. J. Chem. Phys. 126, 1–9 (2007)

    Google Scholar 

  17. Ru, P., Vill-Freixa, J., Burrage, K.: Simulation methods with extended stability for stiff biochemical kinetics. BMC Syst. Biol. 4(110), 1–13 (2010)

    Google Scholar 

  18. Elworthy, K., Truman, A., Zhao, H., Gaines, J.: Approximate traveling waves for generalized KPP equations and classical mechanics. Proc. R. Soc. Lond. Ser. A 446(1928), 529–554 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  19. Platen, E., Bruti-Liberati, N.: Numerical Solution of Stochastic Differential Equations with Jumps in Finance. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  20. Khodabin, M., Maleknejad, K., Rostami, M., Nouri, M.: Numerical solution of stochastic differential equations by second order Runge–Kutta methods. Appl. Math. Model. 53, 1910–1920 (2011)

    MathSciNet  MATH  Google Scholar 

  21. Kloeden, P., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer, Berlin (1999)

    MATH  Google Scholar 

  22. Cortes, J.C., Jodar, L., Villafuerte, L.: Numerical solution of random differential equations: a mean square approach. Math. Comput. Model. 45, 757–765 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Cortes, J.C., Jodar, L., Villafuerte, L.: Mean square numerical solution of random differential equations: facts and possibilities. Comput. Math. Appl. 53, 1098–1106 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Oksendal, B.: Stochastic Differential Equations: An introduction with applications. Springer, New York (1998)

  25. Holden, H., Oksendal, B., Uboe, J., Zhang, T.: Stochastic Partial Differential Equations. Springer, Berlin (1996)

  26. Abdulle, A., Blumenthal, A.: Stabilized multilevel Monte Carlo method for stiff stochastic differential equations. J. Comput. Phys. 251, 445–460 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Berger, M., Mizel, V.: Volterra equations with Ito integrals I. J. Integral Equ. 2, 187–245 (1980)

    MathSciNet  MATH  Google Scholar 

  28. Murge, M., Pachpatte, B.: On second order Ito type stochastic integro-differential equations. Analele Stiintifice ale Universitatii. I. Cuza din Iasi, Mathematica, 30(5), 25–34 (1984)

  29. Murge, M., Pachpatte, B.: Successive approximations for solutions of second order stochastic integro-differential equations of Ito type. Indian J. Pure Appl. Math. 21(3), 260–274 (1990)

    MathSciNet  MATH  Google Scholar 

  30. Zhang, X.: Euler schemes and large deviations for stochastic Volterra equations with singular kernels. J. Differ. Equ. 244, 2226–2250 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Jankovic, S., Ilic, D.: One linear analytic approximation for stochastic integro-differential equations. Acta Math. Sci. 308(4), 1073–1085 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhang, X.: Stochastic Volterra equations in Banach spaces and stochastic partial differential equation. Acta J. Funct. Anal. 258, 1361–1425 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Yong, J.: Backward stochastic Volterra integral equations and some related problems. Stoch. Process. Appl. 116, 779–795 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Djordjevic, A., Jankovic, S.: On a class of backward stochastic Volterra integral equations. Appl. Math. Lett. (2013). doi:10.1016/j.aml.2013.07.006

    MathSciNet  MATH  Google Scholar 

  35. Heydari, M.H., Hooshmandasl, M.R., Mohammadi, F.: Legendre wavelets method for solving fractional partial differential equations with Dirichlet boundary conditions. Appl. Math. Comput. 234, 267–276 (2014)

    MathSciNet  MATH  Google Scholar 

  36. Heydari, M.H., Hooshmandasl, M.R., Mohammadi, F.: Two-dimensional Legendre wavelets for solving time-fractional telegraph equation. Adv. Appl. Math. Mech. 6(2), 247–260 (2014)

    MathSciNet  MATH  Google Scholar 

  37. Heydari, M.H., Hooshmandasl, M.R., Cattani, C., Li, M.: Legendre wavelets method for solving fractional population growth model in a closed system. Math. Probl. Eng. 2013, 1–8 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. Heydari, M.H., Hooshmandasl, M.R., Ghaini, F.M., Mohammadi, F.: Wavelet collocation method for solving multiorder fractional differential equations. J. Appl. Math. 2012, 1–19 (2012)

  39. Heydari, M.H., Hooshmandasl, M.R., Ghaini, F.M.M., Cattani, C.: Wavelets method for the time fractional diffusion-wave equation. Phys. Lett. A 379, 71–76 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Heydari, M. H., Hooshmandasl, M. R., Maalek Ghaini, F. M., Fatehi Marji, M., Dehghan, R., Memarian, M. H.: A new wavelet method for solving the Helmholtz equation with complex solution. Numer. Methods Partial Differ. Equ. 32(3), 741–756 (2016)

  41. Heydari, M.H., Hooshmandasl, M.R., Barid Loghmania, Gh., Cattani, C.: Wavelets Galerkin method for solving stochastic heat equation. Int. J. Comput. Math. (2015). doi:10.1080/00207160.2015.1067311

  42. Babolian, E., Mordad, M.: A numerical method for solving systems of linear and nonlinear integral equations of the second kind by hat basis function. Comput. Math. Appl. 62, 187–198 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  43. Tripathi, M.P., Baranwal, V.K., Pandey, R.K., Singh, O.P.: A new numerical algorithm to solve fractional differential equations based on operational matrix of generalized hat functions. Commun. Nonlinear Sci. Numer. Simul. 18, 1327–1340 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  44. Heydari, M.H., Hooshmandasl, M.R., Ghaini, F.M.M., Cattani, C.: A computational method for solving stochastic Itô–Volterra integral equations based on stochastic operational matrix for generalized hat basis functions. J. Comput. Phys. 270, 402–415 (2014)

    Article  MathSciNet  Google Scholar 

  45. Heydari, M.H., Hooshmandasl, M.R., Cattani, C., Ghaini, F.M.M.: An efficient computational method for solving nonlinear stochastic Itô–Volterra integral equations: application for stochastic problems in physics. J. Comput. Phys. 283, 148–168 (2015)

    Article  MathSciNet  Google Scholar 

  46. Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer, Berlin (1995)

    MATH  Google Scholar 

  47. Schwartz, E.S.: The stochastic behavior of commodity prices: implications for valuation and hedging. J. Finance 52, 923–973 (1997)

    Article  Google Scholar 

  48. Jackwerth, J., Rubinstein, M.: Recovering probability distributions from contemporaneous security prices. J. Finance 51(5), 1611–1631 (1996)

    Article  Google Scholar 

  49. Rubinstein, M.: Nonparametric tests of alternative option pricing models. J. Finance 40(2), 455–480 (1985)

    Article  Google Scholar 

  50. Aarató, M.: A famous nonlinear stochastic equation (Lotka–Volterra model with diffusion). Math. Comput. Model. 38, 709–726 (2003)

    Article  MathSciNet  Google Scholar 

  51. Henderson, D., Plaschko, P.: Stochastic Differential Equations in Science and Engineering. World Scientific, Singapore (2006)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Heydari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heydari, M.H., Hooshmandasl, M.R., Shakiba, A. et al. Legendre wavelets Galerkin method for solving nonlinear stochastic integral equations. Nonlinear Dyn 85, 1185–1202 (2016). https://doi.org/10.1007/s11071-016-2753-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2753-x

Keywords

Navigation