Skip to main content
Log in

Development and application of computational intelligence approaches for the identification of complex nonlinear systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper builds on advancements in the field of Computational Intelligence to develop a robust approach that combines stochastic optimization methods utilizing Genetic Programming, together with nonlinear evolutionary optimization methods for optimizing the parameters, and Computer Algebra techniques that involve symbolic manipulation of expressions during the course of evolution, to “discover” a parsimonious differential operator that represents an optimum match to the governing differential equation of the target complex nonlinear system and subsequently discloses the correct nature of the investigated system. The proposed scheme requires input and output data only, without postulating any model class in advance. This technique can also discover an accurate single expression, with direct physical interpretation, that represents the governing multi-region (response domain) equations of systems that incorporate certain classes of nonlinear phenomena (such as yielding). Yet, unlike many conventional nonparametric techniques whose approximations result in undesirable oscillations around unsmooth points, automatic incorporation of discontinuous basis functions in this approach eliminates the need of such approximations and their concomitant errors. A variety of highly nonlinear phenomena are considered to assess the capabilities and the generalization extent of the suggested approach. It is shown that the method of this paper provides a robust methodology for developing reduced-order, reduced-complexity, computational models (in the form of governing differential equations) that can be used for obtaining high-fidelity models that reflect the correct “physics” of the underlying phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ibanez, P.: Identification of dynamic parameters of linear and non-linear structural models from experimental data. Nucl. Eng. Des. 25(1), 30–41 (1973)

    Article  Google Scholar 

  2. Masri, S.F., Caughey, T.K.: A nonparametric identification technique for nonlinear dynamic problems. J. Appl. Mech. 46(2), 433–447 (1979)

    Article  MATH  Google Scholar 

  3. Masri, S.F., Sassi, H., Caughey, T.K.: Nonparametric identification of nearly arbitrary nonlinear systems. J. Appl. Mech. 49(3), 619–628 (1982)

    Article  MATH  Google Scholar 

  4. Marsi, S.F., Bekey, G.A., Sassi, H., Caughey, T.K.: Non-parametric identification of a class of non-linear multidegree dynamic systems. Earthq. Eng. Struct. Dyn. 10(1), 1–30 (1982)

    Article  Google Scholar 

  5. Yun, H.B., Tasbighoo, F., Masri, S.F., Caffrey, J.P., Wolfe, R.W., Makris, N., Black, C.: Comparison of modeling approaches for full-scale nonlinear viscous dampers. J. Vib. Control 14(1–2), 51–76 (2008)

    Article  MATH  Google Scholar 

  6. Yun, H.B., Masri, S.F., Wolfe, R.W., Benzoni, G.: Data-driven methodologies for change detection in large-scale nonlinear dampers with noisy measurements. J. Sound Vib. 322(1–2), 336–357 (2009)

    Article  Google Scholar 

  7. Kim, C.H., Mijar, A.R., Arora, J.S.: Development of simplified models for design and optimization of automotive structures for crashworthiness. Struct. Multidiscip. Optim. 22(4), 307–321 (2001)

    Article  Google Scholar 

  8. Allen, M.S., Sumali, H., Epp, D.S.: Piecewise-linear restoring force surfaces for semi-nonparametric identification of nonlinear systems. Nonlinear Dyn. 54(1–2), 123–135 (2008)

    Article  MATH  Google Scholar 

  9. Crawley, E.F., Aubert, A.C.: Identification of nonlinear structural elements by force-state mapping. AIAA j. 24(1), 155–162 (1986)

    Article  Google Scholar 

  10. Benedettini, F., Capecchi, D., Vestroni, F.: Identification of hysteretic oscillators under earthquake loading by nonparametric models. J. Eng. Mech. 121(5), 606–612 (1995)

    Article  Google Scholar 

  11. Shin, K., Hammond, J.K.: Pseudo force-state mapping method: incorporation of the embedding and force-state mapping methods. J. Sound Vib. 211(5), 918–922 (1998)

    Article  MathSciNet  Google Scholar 

  12. Haroon, M., Douglas, E.A., Luk, Y.W., Ferri, A.A.: A time and frequency domain approach for identifying nonlinear mechanical system models in the absence of an input measurement. J. Sound Vib. 283(3–5), 1137–1155 (2005)

    Article  Google Scholar 

  13. Ajjan Al-Hadid, M., Wright, J.R.: Developments in the force-state mapping technique for non-linear systems and the extension to the location of non-linear elements in a lumped-parameter system. Mech. Syst. Signal Process. 3(3), 269–290 (1989)

    Article  MATH  Google Scholar 

  14. Box, G.: Time Series Analysis: Forecasting and Control. Holden-Day, San Francisco (1970)

    MATH  Google Scholar 

  15. Leontaritis, I.J., Billings, S.A.: Input-output parametric models for non-linear systems. part i: deterministic non-linear systems. Int. J. Control 41(2), 303–328 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  16. Leontaritis, I.J., Billings, S.A.: Input-output parametric models for non-linear systems. Part ii: stochastic non-linear systems. Int. J. Control 41(2), 329–344 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  17. Haitao, L., Mita, A.: Damage indicator defined as the distance between arma models for structural health monitoring. Struct. Control Health Monit. 15(7), 992–1005 (2008)

    Article  Google Scholar 

  18. Kerschen, G., Worden, K., Vakakis, A.F., Golinval, J.-C.: Past, present and future of nonlinear system identification in structural dynamics. Mech. Syst. Signal Process. 20(3), 505–592 (2006)

    Article  Google Scholar 

  19. Saito, T., Beck, J.L.: Bayesian model selection for arx models and its application to structural health monitoring. Earthq. Eng. Struct. Dyn. 39(15), 1737–1759 (2010)

    Article  Google Scholar 

  20. Masri, S.F., Chassiakos, A.G., Caughey, T.K.: Structure-unknown non-linear dynamic systems: identification through neural networks. Smart Mater. Struct. 1(1), 45–56 (1992)

    Article  Google Scholar 

  21. Masri, S.F., Chassiakos, A.G., Caughey, T.K.: Identification of nonlinear dynamic systems using neural networks. Trans. ASME J. Appl. Mech. 60(1), 123–133 (1993)

    Article  Google Scholar 

  22. Worden, K., Tomlinson, G.R.: Modeling and classification of non-linear systems using neural networks-i. simulation. Mech. Syst. Signal Process. 8(3), 319–356 (1994)

    Article  MathSciNet  Google Scholar 

  23. Worden, K., Tomlinson, G.R., Lim, W., Sauer, G.: Modeling and classification of non-linear systems using neural networks. ii. a preliminary experiment. Mech. Syst. Signal Process. 8(4), 395–419 (1994)

    Article  Google Scholar 

  24. Chassiakos, A.G., Masri, S.F.: Modelling unknown structural systems through the use of neural networks. Earthq. Eng. Struct. Dyn. 25(2), 117–128 (1996)

    Article  Google Scholar 

  25. Smyth, A.W., Masri, S.F., Chassiakos, A.G., Caughey, T.K.: On-line parametric identification of mdof nonlinear hysteretic systems. J. Eng. Mech. 125(2), 133–142 (1999)

  26. Masri, S.F., Smyth, A.W., Chassiakos, A.G., Caughey, T.K., Hunter, N.F.: Application of neural networks for detection of changes in nonlinear systems. J. Eng. Mech. 126(7), 666–676 (2000)

    Article  Google Scholar 

  27. Pei, J.S., Smyth, A.W.: New approach to designing multilayer feedforward neural network architecture for modeling nonlinear restoring forces. i: formulation. J. Eng. Mech. 132(12), 1290–1300 (2006)

    Article  Google Scholar 

  28. Pei, J.S., Smyth, A.W.: New approach to designing multilayer feedforward neural network architecture for modeling nonlinear restoring forces ii: applications. J. Eng. Mech. 132(12), 1301–1312 (2006)

    Article  Google Scholar 

  29. Darwin, C.: The Origin of Species by Means of Natural Selection or the Preservation of Favored Races in the Struggle for Life. Murray, London (1859)

    Google Scholar 

  30. Koza, J.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  31. Tackett, W.A.: Genetic Programming for Feature Discovery and Image Discrimination. San Mateo, CA (1993)

    Google Scholar 

  32. Gruau, F.: Automatic definition of modular neural networks. Adapt. Behav. 3(2), 151–183 (1994)

    Article  Google Scholar 

  33. Spector, L., Alpern, A.: Induction and Recapitulation of Deep Musical Structure. Montreal, Quebec (1995)

    Google Scholar 

  34. Handley, S.: Predicting Whether or Not a Nucleic Acid Sequence is an e. coli Promoter Region using Genetic Programming. Herndon, VA (1995)

    Book  Google Scholar 

  35. Wong, M.L., Leung, K.S., Cheng, J.C.Y.: Discovering knowledge from noisy databases using genetic programming. J. Am. Soc. Inf. Sci. 51(9), 870–881 (2000)

    Article  Google Scholar 

  36. Howard, D., Roberts,S.C.: The Prediction of Journey Times on Motorways using Genetic Programming, pp. 210–21. Berlin, Germany (2002)

  37. Becker, Y., Fei, P., Lester, A.: Stock selection: an innovative application of genetic programming methodology. In: Riolo, R., Soule, T., Worzel, B. (eds.) Genetic Programming Theory and Practice IV, Genetic and Evolutionary Computation, pp. 315–334. Springer, US (2007)

    Chapter  Google Scholar 

  38. Schmidt, M., Lipson, H.: Distilling free-form natural laws from experimental data. Science 324(5923), 81–85 (2009)

    Article  Google Scholar 

  39. Hornby, G.S., Lohn, J.D., Linden, D.S.: Computer-automated evolution of an x-band antenna for nasa’s space technology 5 mission. Evolut. Comput. 19(1), 1–23 (2011)

    Article  Google Scholar 

  40. Silva, S., Anunciação, O., Lotz, M.: A comparison of machine learning methods for the prediction of breast cancer. In: Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics, pp. 159–170. Springer, Berlin (2011)

  41. Dracopoulos, D., Effraimidis, D.: Genetic programming for generalised helicopter hovering control. In: Genetic Programming, volume 7244 of Lecture Notes in Computer Science, pp. 25–36. Springer, Berlin (2012)

  42. Fisher, R.A.: The Genetical Theory of Natural Selection. Diver, NY (1958)

  43. Fogel, L.J., Owens, A.J., Walsh, M.J.: Artificial Intelligence Through Simulated Evolution. Wiley, New York (1966)

    MATH  Google Scholar 

  44. Schwefel, H.P.: Kybernetische evolution als strategie der experimentellen forschung in der stromungstechnik (1973)

  45. Rechenberg, I.: Evolutionsstrategie: Optimierung technischer systeme nach prinzipien der biologischen evolution. Frommann-Holzboog (1973)

  46. Holland, J.H.: Adaptation in Natural and Artificial Systems. The University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  47. Thierens, D., Goldberg, D.: Convergence Models of Genetic Algorithm Selection Schemes, pp. 119–29. Berlin, Germany (1994)

  48. Fleming, P.J., Purshouse, R.C.: Evolutionary algorithms in control systems engineering: a survey. Control Eng. Pract. 10(11), 1223–1241 (2002)

  49. Baker, J.E.: Reducing Bias and Inefficiency in the Selection Algorithm, pp. 14–21. Hillsdale, NJ (1987)

  50. Goldberg, D.E., Deb, K.: A Comparative Analysis of Selection Schemes used in Genetic Algorithms, pp. 69–93. Foundations of genetic algorithms (1991)

  51. Langdon, W.B., Poli, R.: Genetic programming bloat with dynamic fitness. In: Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T.C. (eds.) The First European Workshop on Genetic Programming, volume 1391 of LNCS, pp. 96112. Springer, Paris (1998)

  52. Banzhaf, W., Langdon, W.B.: Some considerations on the reason for bloat. Genet. Program. Evolvable Mach. 3(1), 81–91 (2002)

    Article  MATH  Google Scholar 

  53. Silva, S., Costa, E.: Dynamic Limits for Bloat Control: Variations on Size and Depth. pp. 666–77. Berlin, Germany (2004)

  54. Luke, S., Panait, L.: Lexicographic parsimony pressure. In: Langdon, W.B., et al. (eds.) GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 829–836. Morgan Kaufmann Publishers, New York (2002)

  55. Gagne, C., Schoenauer, M., Parizeau, M., Tomassini, M.: Genetic Programming, Validation Sets, and Parsimony Pressure, pp. 109–20. Berlin, Germany (2006)

  56. Masri, S.F., Caffrey, J.P., Caughey, T.K., Smyth, A.W., Chassiakos, A.G.: Identification of the state equation in complex non-linear systems. Int. J. Non-Linear Mech. 39(7), 1111–1127 (2004)

    Article  MATH  Google Scholar 

  57. Baker, G.A., Graves-Morris, P.: Pade Approximations, 2nd edn. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  58. Emmel, L., Kaber, S.M., Maday, Y.: Pade-jacobi filtering for spectral approximations of discontinuous solutions. Numer. Algorithms 33(1–4), 251–264 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  59. Kaber, S.M., Maday, Y.: Analysis of some pade-chebyshev approximants. SIAM J. Numer. Anal. 43(1), 437–454 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  60. Hesthaven, J.S., Kaber, S.M., Lurati, L.: Pade-legendre interpolants for gibbs reconstruction. J. Sci. Comput. 28(2–3), 337–359 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  61. Foster, J., Richards, F.B.: The gibbs phenomenon for piecewise-linear approximation. Am. Math. Mon. 98(1), 47–49 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  62. Driscoll, T.A., Fornberg, B.: A pade-based algorithm for overcoming the gibbs phenomenon. Numer. Algorithms 26(1), 77–92 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  63. Shizgal, B.D., Jung, J.H.: Towards the resolution of the gibbs phenomena. J. Comput. Appl. Math. 161(1), 41–65 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  64. Chantrasmi, T., Doostan, A., Iaccarino, G.: Pade-legendre approximants for uncertainty analysis with discontinuous response surfaces. J. Comput. Phys. 228(19), 7159–7180 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  65. Lew, T.L., Spencer, A.B., Scarpa, F., Worden, K., Rutherford, A., Hemez, F.: Identification of response surface models using genetic programming. Mech. Syst. Signal Process. 20(8), 1819–1831 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support by King Abdulaziz City for Science and Technology (KACST) through contract number 32-710. The support of Prince Dr. Turki Bin Saud Al-Saud KACST VP is appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Bolourchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolourchi, A., Masri, S.F. & Aldraihem, O.J. Development and application of computational intelligence approaches for the identification of complex nonlinear systems. Nonlinear Dyn 79, 765–786 (2015). https://doi.org/10.1007/s11071-014-1702-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1702-9

Keywords

Navigation