Skip to main content
Log in

Dynamical behavior of a competitive system under the influence of random disturbance and toxic substances

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A two-species competitive system under the influence of random disturbance and toxic substances is studied theoretically and numerically. The existence of a stationary distribution, extinction, and stability of this model are considered. Our results show that both the environmental disturbance and toxic substances can destabilize biological populations. A set of sufficient conditions which guarantee that one of the species is driven to extinction while the other is stable in the mean is illustrated. Numerical simulations are also presented to illustrate the feasibility of our main results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rice, E.I.: Allelopathy, 2nd edn. Academic Press, New York (1984)

    Google Scholar 

  2. Pratt, R.: Influence of the size of the inoculum on the growth of Chlorella vulgaris in freshly prepared culture medium. Am. J. Bot. 27, 52–56 (1940)

    Article  Google Scholar 

  3. Pratt, R., Fong, J.: Studies on Chlorella vulgaris, II. Further evidence that Chlorella cells form a growth-inhibiting substance. Am. J. Bot. 27, 431–436 (1940)

    Article  Google Scholar 

  4. Rice, T.R.: Biotic influences affecting population growth of planktonic algae. US Fish Wildl. Serv. Fish Bull. 54, 227–245 (1954)

    Google Scholar 

  5. Rodhe, W.: Environmental requirements of fresh-water plankton algae: experimental studies in the ecology of phytoplankton. Symb. Bot. Upsal. 1, 1–149 (1948)

    Google Scholar 

  6. Hellebust, J.A.: Extracellular Products in Algal Physiology and Biochemistry. Blackwell Scientific Publication, London (1974)

    Google Scholar 

  7. Renshaw, E.: Modelling Biological Population in Space and Time. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  8. Gard, T.C.: Persistence in stochastic food web models. Bull. Math. Biol. 46, 357–370 (1984)

    MATH  MathSciNet  Google Scholar 

  9. Gard, T.C.: Stability for multispecies population models in random environments. Nonlinear Anal. 10, 1411–1419 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bandyopadhyay, M., Chattopadhyay, J.: Ratio-dependent predator-prey model: effect of environmental fluctuation and stability. Nonlinearity 18, 913–936 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Sara, P.: The stochastic logistic equation: stationary solutions and their stability. Rendiconti del Seminario Matematico della Università di Padova 106, 165–183 (2001)

    MATH  Google Scholar 

  12. Ji, C., Jiang, D., Shi, N.: A note on a predator-prey model with modified Leslie–Gower and Holling-type \(\amalg \) schemes with stochastic perturbation. J. Math. Anal. Appl 377, 435–440 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ji, C., Jiang, D.: Dynamics of a stochastic density dependent predator-prey system with Beddington-DeAngelis functional response. J. Math. Anal. Appl. 381, 441–453 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hu, G., Wang, K.: Stability in distribution of competitive Lotka–Volterra system with Markovian switching. Appl. Math. Model. 35, 3189–3200 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  15. Wang, K.: Stochastic Biomathematics Models. Science Press, Beijing (2010)

    Google Scholar 

  16. Turelli, M., Gillespie, J.H.: Conditions for the existence of stationary densities for some two dimensional diffusion processes with applications in population biology. Theor. Popul. Biol. 17, 167–189 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  17. Li, Z., Chen, F.: Extinction in two dimensional nonautonomous Lotka–Volterra systems with the effect of toxic substances. Appl. Math. Comput. 182, 684–690 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Chen, F., Li, Z., Chen, X., Laitochová, J.: Dynamic behaviors of a delay differential equation model of plankton allelopathy. J. Comput. Appl. Math. 206, 733–754 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Li, Z., Chen, F.: Extinction in periodic competitive stage-structured Lotka–Volterra model with the effects of toxic substances. J. Comput. Appl. Math. 231, 143–153 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Zhang, Y., Zhang, Q.: Dynamic behavior in a delayed stage-structured population model with stochastic fluctuation and harvesting. Nonlinear Dyn. 66, 231–245 (2011)

    Article  MATH  Google Scholar 

  21. Xu, Y., Wang, X., Zhang, H., Xu, W.: Stochastic stability for nonlinear systems driven by Lévy noise. Nonlinear Dyn. 68, 7–15 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  22. Li, X., Liu, X.: Moment Lyapunov exponent and stochastic stability for a binary airfoil driven by an ergodic real noise. Nonlinear Dyn. 73, 1601–1614 (2013)

    Article  MATH  Google Scholar 

  23. Maynard Smith, J.: Models in Ecology. Cambridge University Press, Cambridge (1974)

    MATH  Google Scholar 

  24. Solé, J., García-Ladona, E., Ruardij, P., Estrada, M.: Modelling allelopathy among marine algae. Ecol. Model 183, 373–384 (2005)

    Article  Google Scholar 

  25. Wang, Y., Yu, Z., Song, X., Zhang, S.: Interactions between the bloom-forming dinoflagellates Prorocentrum donghaiense and Alexandrium tamarense in laboratory cultures. J. Sea Res. 56, 17–26 (2006)

    Article  Google Scholar 

  26. Fergola, P., Cerasuolo, M., Pollio, A., Pinto, G., DellaGreca, M.: Allelopathy and competition between Chlorella vulgaris and Pseudokirchneriella subcapitata: experiments and mathematical model. Ecol. Model. 208, 205–214 (2007)

    Article  Google Scholar 

  27. Wang, Y., Tang, X.: Interactions between Prorocentrum donghaiense Lu and Scrippsiella trochoidea (Stein) Loeblich III under laboratory culture. Harmful Algae 7, 65–75 (2008)

    Article  Google Scholar 

  28. Dubey, B., Hussain, J.: A model for the allelopathic effect on two competing species. Ecol. Model. 129, 195–207 (2000)

    Article  Google Scholar 

  29. Dubey, B., Shukla, J.B., Sharma, S., Agarwal, A.K., Sinha, P.: A mathematical model for chemical defense mechanism of two competing species. Nonlinear Anal. RWA 11, 1143–1158 (2010)

    Google Scholar 

  30. Horsthemke, W., Lefever, R.: Noise Induced Transitions. Springer, Berlin (1984)

    MATH  Google Scholar 

  31. Chattopadhyay, J.: Effect of toxic substance on a two-species competitive system. Ecol. Model. 84, 287–289 (1996)

    Article  Google Scholar 

  32. Samanta, G.P.: A two-species competitive system under the inliuence of toxic substances. Appl. Math. Comput. 216, 291–299 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  33. Liu, Z., Chen, L.: Periodic solution of a two-species competitive system with toxicant and birth pulse. Chaos Solitons Fract. 32, 1703–1712 (2007)

    Article  MATH  Google Scholar 

  34. Ikeda, N., Wantanabe, S.: Stochastic Differential Equations and Diffusion Processes. North-Holland Publication and Co., Amsterdam (1981)

    MATH  Google Scholar 

  35. Arnold, L.: Stochastic Differential Equations: Theory and Applications. Wiley, New York (1972)

    Google Scholar 

  36. Friedman, A.: Stochastic Differential Equations and Their Applications. Academic Press, New York (1976)

    Google Scholar 

  37. Peng, S., Zhu, X.: Necessary and sufficient condition for comparison theorem of 1-dimensional stochastic differential equations. Stoch. Process. Appl. 116, 370–380 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  38. Hasminskii, R.: Stochastic stability of differential eauations. In: Mechanics and Analysis, Sijthoff and Noordhoff, Alphen aan den Rijn (1980).

  39. Gard, T.: Introduction to Stochastic Differential Equation. Dekker, New York (1988)

    Google Scholar 

  40. Strang, G.: Linear Algebra and Its Applications. Thomson Learning Inc, Belmont (1988)

    Google Scholar 

  41. Zhu, C., Yin, G.: Asmpptotic properties of hybird diffusion systems. SIAM J. Control Optim 46, 1155–1179 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  42. Liu, M., Wang, K.: Survival analysis of a stochastic cooperation system in a polluted environment. J. Biol. Syst. 19, 183–204 (2011)

    Article  MATH  Google Scholar 

  43. Mao, X., Yuan, C.: Stochastic Differential Equations with Markovian Switching. Imperial College Press, London (2006)

  44. Ahmad, S.: On the nonautonomous Volrerra–Lotka competition equations. Proc. Amer. Math. Soc. 117, 199–204 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  45. Li, X., Gray, A., Jiang, D., Mao, X.: Sufficient and necessary conditions of stochastic permanence and extinction for stochastic logistic populations under regime switching. J. Math. Anal. Appl. 376, 11–28 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This research was partially supported by grants from the National Natural Science Foundation of PR China (No. 11301207), (No. 11301112), (No. 11171081), (No. 11171056), (No. 11126219), (No. 11001032), (No. 11101183), and (No. 11226254); Project (HIT.NSRIF.2015103) by Natural Scientific Research Innovation Foundation in Harbin Institute of Technology, Natural Science Research Project of Ordinary Universities in Jiangsu Province (No. 13KJB110002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoling Zou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, R., Zou, X. & Wang, K. Dynamical behavior of a competitive system under the influence of random disturbance and toxic substances. Nonlinear Dyn 77, 1209–1222 (2014). https://doi.org/10.1007/s11071-014-1371-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1371-8

Keywords

Navigation