Skip to main content

Advertisement

Log in

Chaos in the fractionally damped broadband piezoelectric energy generator

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Piezoelectric materials play a significant role in harvesting ambient vibration energy. Due to their inherent characteristics and electromechanical interaction, the system damping for piezoelectric energy harvesting can be adequately characterized by fractional calculus. This paper introduces the fractional model for magnetically coupling broadband energy harvesters under low-frequency excitation and investigates their nonlinear dynamic characteristics. The effects of fractional-order damping, excitation amplitude, and frequency on dynamic behaviors are proposed using the phase trajectory, power spectrum, Poincare map, and bifurcation diagram. The numerical analysis shows that the fractionally damped energy harvesting system exhibits chaos, periodic motion, chaos and periodic motion in turn when the fractional order changes from 0.2 to 1.5. The period doubling route to chaos and the inverse period doubling route from chaos to periodic motion can be clearly observed. It is also demonstrated numerically and experimentally that the magnetically coupling piezoelectric energy harvester possesses the usable frequency bandwidth over a wide range of low-frequency excitation. Both high-energy chaotic attractors and large-amplitude periodic response with inter-well oscillators dominate these broadband energy harvesting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Pearson, M.R., Eaton, M.J., Pullin, R., Featherston, C.A., Holford, K.M.: Energy harvesting for aerospace structural health monitoring systems. J. Phys. 382, 012025 (2012)

    Google Scholar 

  2. Qing, X., Chan, H., Beard, S.J.: An active diagnostic system for structural health monitoring of rocket engines. J. Intell. Mater. Syst. Struct. 17(7), 619–628 (2006)

    Article  Google Scholar 

  3. Ihn, J., Chang, F.: Detection and monitoring of Hidden fatigue crack growth using a built-in piezoelectric sensor/actuator network: I. Diagn. Smart Mater. Struct. 13(3), 609–620 (2004)

    Article  Google Scholar 

  4. Lynch, J.P., Loh, K.: A summary review of wireless sensors and sensor networks for structural health monitoring. Shock Vib. Digest 38(2), 91–128 (2006)

    Article  Google Scholar 

  5. Lu, K.C., Loh, C., Yang, Y., Lynch, J.P., Law, K.H.: Real-time structural damage detection using wireless sensing and monitoring system. Smart Mater. Struct. 4(6), 759–778 (2008)

    Article  Google Scholar 

  6. Zhao, X., Gao, H., Rose, J.L.: Active health monitoring of an aircraft wing with embedded piezoelectric sensor/actuator network: I. Defect detection, localization and growth monitoring. Smart Mater. Struct. 16(4), 1208–1225 (2007)

    Article  Google Scholar 

  7. Leland, E.S., Wright, P.K.: Resonance tuning of piezoelectric vibration energy scavenging generators using compressive axial preload. Smart Mater. Struct. 15(5), 1413–1420 (2006)

    Article  Google Scholar 

  8. Hu, Y., Xue, H., Hu, H.: A piezoelectric power harvester with adjustable frequency through axial preloads. Smart Mater. Struct. 16(5), 1961–1966 (2007)

    Article  Google Scholar 

  9. Rhimi, M., Lajnef, N.: Passive temperature compensation in piezoelectric vibrators using shape memory alloy-induced axial loading. J. Intell. Mater. Syst. Struct. 23(15), 1759–1770 (2012)

    Article  Google Scholar 

  10. Lallart, M., Anton, S.R., Inman, D.J.: Frequency self-tuning scheme for broadband vibration energy harvesting. J. Intell. Mater. Syst. Struct. 21, 897–906 (2010)

    Article  Google Scholar 

  11. Eichhorn, C., Tchagsim, R., Wilhelm, N., Woias, P.: A smart and self-sufficient frequency tunable vibration energy harvester. J. Micromech. Microeng. 21(10), 104003–11 (2011)

    Article  Google Scholar 

  12. Mann, B.P., Sims, N.D.: Energy harvesting from the nonlinear oscillations of magnetic levitation. J. Sound Vib. 319, 515–530 (2009)

    Article  Google Scholar 

  13. Burrow, S., Clare, L., Carrella, A., Barton, D.: Vibration energy harvesters with nonlinear compliance. In: Proceedings of SPIE Smart Structures/NDE Conference, pp. 3–10 (2008)

  14. Ramlan, R., Brennan, M.J., Mace, B.R., Kovacic, I.: Potential benefits of an on-linear stiffness in an energy harvesting device. Nonlinear Dyn. 59, 545–558 (2009)

    Article  Google Scholar 

  15. Stanton, S.C., McGehee, C.C., Mann, B.P.: Reversible hysteresis for broadband magnetopiezoelastic energy harvesting. Appl. Phys. Lett. 96, 174103 (2010)

    Article  Google Scholar 

  16. Daqaq, M., Stabler, C., Qaroush, Y., Seuaciuc-Osorio, T.: Investigation of power harvesting via parametric excitations. J. Intell. Mater. Syst. Struct. 20(5), 545–557 (2009)

    Article  Google Scholar 

  17. Shahruz, S.: Increasing the efficiency of energy scavengers by magnets. J. Comput. Nonlinear Dyn. 3, 1–12 (2004)

    Google Scholar 

  18. Cottone, F., Vocca, H., Gammaitoni, L.: Nonlinear energy harvesting. Phys. Rev. Lett. 102, 1–4 (2009)

    Article  Google Scholar 

  19. Erturk, A., Hoffmann, J., Inman, D.: A piezo-magneto-elastic structure for broadband vibration energy harvesting. Appl. Phys. Lett. 94, 254102–3 (2009)

    Article  Google Scholar 

  20. Gammaitoni, L., Neri, I., Vocca, H.: Nonlinear oscillators for vibration energy harvesting. Appl. Phys. Lett. 94, 164102–2 (2009)

    Article  Google Scholar 

  21. Stanton, S.C., McGehee, C.C., Mann, B.P.: Nonlinear dynamics for broadband energy harvesting: investigation of a bistable piezoelectric inertial generator. Phys. D 239, 640–653 (2010)

    Article  MATH  Google Scholar 

  22. Erturk, A., Inman, D.J.: Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling. J. Sound Vib. 330, 2339–2353 (2011)

    Article  Google Scholar 

  23. Masana, R., Daqaqa, M.F.: Energy harvesting in the super-harmonic frequency region of a twin-well oscillator. J. Appl. Phys. 111, 044501–044511 (2012)

    Article  Google Scholar 

  24. Twiefel, J., Westermann, H.: Survey on broadband techniques for vibration energy harvesting. J. Intell. Mater. Syst., Struct (2013)

  25. Harne, R.L., Wang, K.W.: A review of the recent research on vibration energy harvesting via bistable systems. Smart Mater. Struct. 22(2), 023001 (2013)

    Article  Google Scholar 

  26. Zhou, S., Cao, J., Erturk, A., Lin, J.: Enhanced broadband piezoelectric energy harvesting using rotatable magnets. Appl. Phys. Lett. 102, 173901 (2013)

    Article  Google Scholar 

  27. Kumar, G.S.; Prasad, G.: Piezoelectric relaxation in polymer and ferroelectric composites. J. Mater. Sci. 28(9), 2545–2550 (1993)

    Google Scholar 

  28. Hartley, T.T., Lorenzo, C.F.: A frequency-domain approach to optimal fractional-order damping. Nonlinear Dyn. 38(1–4), 69–84 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  29. Maia, N.M.M, Silva, J.M.M., Ribeiro, A. M. R.: On a general model for damping. J. Sound Vib. 218(5), 749–767 (1998)

    Google Scholar 

  30. Machado, J.A.T., Galhano, A.: Fractional dynamics: a statistical perspective. ASME J. Comp. Nonlinear Dyn. 3(2), 1–5 (2008)

    Google Scholar 

  31. Rossikhin, Y.A., Shitikova, M.V.: Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results. ASME J. Appl. Mech. Rev. 63(1), 1–52 (2010)

    Google Scholar 

  32. Vinogradov, A.M., Schmidt, V.H., Tuthill, G.F.: Damping and electromechanical energy losses in the piezoelectric polymer PVDF. Mech. Mater. 36(10), 1007–1016 (2004)

    Article  Google Scholar 

  33. Cattin, D., Oboe, R., Dahiya, R.S., Valle, M.: Identification and validation of fractional order dynamic model for a piezoelectric tactile sensor. In: Proceeding of the 11th IEEE International Workshop on Advanced Motion Control, Nagaoka, Japan. pp. 430–435 (March 2010)

  34. Galucio, A.C., Deu, J.F., Ohayon, R.: A Fractional derivative viscoelastic model for hybrid active–passive damping treatments in time domain—application to sandwich beams. J. Intell. Mater. Syst. Struct. 16(1), 33–45 (2005)

    Article  Google Scholar 

  35. Ducharne, B., Zhang, B., Guyomar, D., Sebald, G.: Fractional derivative operators for modeling piezoceramic polarization behaviors under dynamic mechanical stress excitation. Sens. Actuator A 189, 74–79 (2012)

    Article  Google Scholar 

  36. Chen, Y.Q., Moore, K.L.: Discretization schemes for fractional-order differentiators and integrators. IEEE Trans. Circuits Syst. 49(3), 363–367 (2002)

    Article  MathSciNet  Google Scholar 

  37. Ma, C., Hori, Y.: The time-scaled trapezoidal integration rule for discrete fractional order controllers. Nonlinear Dyn. 38, 171–180 (2004)

    Article  MATH  Google Scholar 

  38. Machado, J.A.T.: Fractional derivatives: probability interpretation and frequency response of rational approximations. Commun. Nonlinear Sci. Numer. Simul. 14(9–10), 3492–3497 (2009)

    Article  Google Scholar 

  39. Cao, J., Xue, S., Lin, J., Chen, Y.: Nonlinear dynamic analysis of a cracked rotor-bearing system with fractional order damping. J. Comp. Nonlinear Dyn. 8, 031008–14 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This project is being jointly supported by the National Natural Science Foundation of China (Grant No. 51075317), Program for New Century Excellent Talents in University (Grant No. NCET-12-0453), and International Cooperation Project in Shaanxi Province (Grant No. 2011KW-21).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junyi Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, J., Zhou, S., Inman, D.J. et al. Chaos in the fractionally damped broadband piezoelectric energy generator. Nonlinear Dyn 80, 1705–1719 (2015). https://doi.org/10.1007/s11071-014-1320-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1320-6

Keywords

Navigation