Skip to main content
Log in

Controlling Rucklidge chaotic system with a single controller using linear feedback and passive control methods

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the control of chaos with a single controller, which provides simplicity in implementation, is investigated in continuous time nonlinear Rucklidge system. For this purpose, a linear feedback controller and a passive controller are constructed and added to the Rucklidge chaotic system. Lyapunov function is used to realize that the controller ensures the global asymptotic stability of the system. Owing to the controller, Rucklidge chaotic system can be regulated to its equilibrium points. Numerical simulations of the proposed methods and local relay control method have been demonstrated, compared and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130–141 (1963)

    Article  Google Scholar 

  2. Rössler, O.E.: An equation for continuous chaos. Phys. Lett. A 57, 397–398 (1976)

    Article  Google Scholar 

  3. Keisuke, I.: Chaos in the Rikitake two-disc dynamo system. Earth Planet. Sci. Lett. 51, 451–457 (1980)

    Article  Google Scholar 

  4. Chua, L.O., Komuro, M., Matsumoto, T.: The double scroll family. IEEE Trans. Circuits Syst. 33(11), 1073–1118 (1986)

    Google Scholar 

  5. Rucklidge, A.M.: Chaos in models of double convection. J. Fluid Mech. 237, 209–229 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chen, G., Ueta, T.: Yet another chaotic attractor. Int. J. Bifurc. Chaos 9(7), 1465–1466 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Lü, J., Chen, G., Zhang, S.: The compound structure of a new chaotic attractor. Chaos Solitons Fractals 14(5), 669–672 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Lü, J., Chen, G., Cheng, D., Celikovsky, S.: Bridge the gap between the Lorenz system and the Chen system. Int. J. Bifurc. Chaos 12(12), 2917–2926 (2002)

    Article  MATH  Google Scholar 

  9. Liu, C., Liu, T., Liu, L., Liu, K.: A new chaotic attractor. Chaos Solitons Fractals 22(5), 1031–1038 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Xu, Y., Li, B., Wang, Y., Zhou, W., Fang, J.: A new four-scroll chaotic attractor consisted of two-scroll transient chaotic and two-scroll ultimate chaotic. Math. Probl. Eng. 2012, 438328 (2012), pp. 1–12

    MathSciNet  Google Scholar 

  11. Wang, Z., Cang, S., Ochola, E.O., Sun, Y.: A hyperchaotic system without equilibrium. Nonlinear Dyn. 69, 531–537 (2012)

    Article  MathSciNet  Google Scholar 

  12. Bouali, S.: A novel strange attractor with a stretched loop. Nonlinear Dyn. 70, 2375–2381 (2012)

    Article  MathSciNet  Google Scholar 

  13. Ott, E., Grebogi, C., York, J.A.: Controlling chaos. Phys. Rev. Lett. 64, 1196–1199 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  14. Jianzu, Y., Vincent, T.L.: Investigation on control of chaos. Chin. J. Aeronaut. 10(3), 233–238 (1997)

    Google Scholar 

  15. Hwang, C.-C., Hsieh, J.-Y., Lin, R.-S.: A linear continuous feedback control of Chua’s circuit. Chaos Solitons Fractals 8(9), 1507–1515 (1997)

    Article  Google Scholar 

  16. Hegazi, A., Agiza, H.N., El-Dessoky, M.M.: Controlling chaotic behavior for spin generator and Rossler dynamical systems with feedback control. Chaos Solitons Fractals 12(4), 631–658 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gambino, G., Lombardo, M.C., Sammartino, M.: Global linear feedback control for the generalized Lorenz system. Chaos Solitons Fractals 29(4), 829–837 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lü, J., Lu, J.: Controlling uncertain Lü system using linear feedback. Chaos Solitons Fractals 17(1), 127–133 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Wang, M., Wang, X.: Controlling Liu system with different methods. Mod. Phys. Lett. B 23(14), 1805–1818 (2009)

    Article  MATH  Google Scholar 

  20. Alvarez-Ramirez, J.: Nonlinear feedback for controlling the Lorenz equation. Phys. Rev. E 50(3), 2339–2342 (1994)

    Article  Google Scholar 

  21. Ding, Y., Jiang, W., Wang, H.: Delayed feedback control and bifurcation analysis of Rossler chaotic system. Nonlinear Dyn. 61, 707–715 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  22. Yu, W.: Passive equivalence of chaos in Lorenz system. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 46(7), 876–878 (1999)

    Article  Google Scholar 

  23. Kemih, K., Filali, S., Benslama, M., Kimouche, M.: Passivity-based control of chaotic Lü system. Int. J. Innov. Comput. Inf. Control 2(2), 331–337 (2006)

    Google Scholar 

  24. Zhang, Q.J., Lu, J.A.: Passive control and synchronization of hyperchaotic Chen system. Chin. Phys. B 17, 492–497 (2008)

    Article  Google Scholar 

  25. Chen, X., Liu, C.: Passive control on a unified chaotic system. Nonlinear Anal., Real World Appl. 11, 683–687 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  26. Emiroglu, S., Uyaroglu, Y.: Control of Rabinovich chaotic system based on passive control. Sci. Res. Essays 5(21), 3298–3305 (2010)

    Google Scholar 

  27. Mahmoud, G.M., Mahmoud, E.E., Arafa, A.A.: Passive control of n-dimensional chaotic complex nonlinear systems. J. Vib. Control 19(7), 1061–1071 (2013)

    Article  Google Scholar 

  28. Chen, D.-Y., Liu, Y.-X., Ma, X.-Y., Zhang, R.-F.: Control of a class of fractional-order chaotic systems via sliding mode. Nonlinear Dyn. 67(1), 893–901 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  29. Njah, A.N.: Tracking control and synchronization of the new hyperchaotic Liu system via backstepping techniques. Nonlinear Dyn. 61, 1–9 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  30. Ma, C., Wang, X.: Impulsive control and synchronization of a new unified hyperchaotic system with varying control gains and impulsive intervals. Nonlinear Dyn. 70(1), 551–558 (2012)

    Article  MATH  Google Scholar 

  31. Byrnes, C.I., Isidori, A., Willem, J.C.: Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear systems. IEEE Trans. Autom. Control 36, 1228–1240 (1991)

    Article  MATH  Google Scholar 

  32. Benitez, S., Acho, L.: Impulsive synchronization for a new chaotic oscillator. Int. J. Bifurc. Chaos 17(2), 617–623 (2007)

    Article  MATH  Google Scholar 

  33. Wu, X.J., Liu, J.S., Chen, G.R.: Chaos synchronization of Rikitake chaotic attractor using the passive control technique. Nonlinear Dyn. 53(1–2), 45–53 (2008)

    MATH  MathSciNet  Google Scholar 

  34. Lu, L., Yu, M., Luan, L.: Synchronization between uncertain chaotic systems with a diverse structure based on a second-order sliding mode control. Nonlinear Dyn. 70(3), 1861–1865 (2012)

    Article  MathSciNet  Google Scholar 

  35. Li, S.Y., Yang, C.H., Lin, C.T., Ko, L.W., Chiu, T.T.: Adaptive synchronization of chaotic systems with unknown parameters via new backstepping strategy. Nonlinear Dyn. 70(3), 2129–2143 (2012)

    Article  MathSciNet  Google Scholar 

  36. Chen, D.-Y., Shi, L., Chen, H.-T., Ma, X.-Y.: Analysis and control of a hyperchaotic system with only one nonlinear term. Nonlinear Dyn. 67, 1745–1752 (2012)

    Article  MathSciNet  Google Scholar 

  37. Shi, X., Wang, Z.: A single adaptive controller with one variable for synchronizing two identical time delay hyperchaotic Lorenz systems with mismatched parameters. Nonlinear Dyn. 69, 117–125 (2012)

    Article  MATH  Google Scholar 

  38. Aloui, S., Pages, O., El Hajjaji, A., Chaari, A., Koubaa, Y.: Improved fuzzy sliding mode control for a class of MIMO nonlinear uncertain and perturbed systems. Appl. Soft Comput. 11(1), 820–826 (2011)

    Article  Google Scholar 

  39. Zhang, J., Li, C., Zhang, H.B., Yu, J.B.: Chaos synchronization using single variable feedback based on backstepping method. Chaos Solitons Fractals 21(5), 1183–1193 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  40. Paskota, M.: On local control of chaos: the neighbourhood size. Int. J. Bifurc. Chaos 6, 169–178 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  41. Radev, R.: Local relay control for a class of nonlinear systems with chaotic behaviors. Int. J. Bifurc. Chaos 14(12), 4265–4273 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  42. Chen, W.X., Tian, L.X.: Synchronization between different systems. J. Jiangsu Univ. Nat. Sci. 26(5), 409–412 (2005)

    MATH  MathSciNet  Google Scholar 

  43. Yao, H., Zhang, X., Geng, X.: Synchronization of Rucklidge system and its application in secure communication. J. Jiangsu Univ. Nat. Sci. 27(2), 185–188 (2006)

    MATH  MathSciNet  Google Scholar 

  44. Zhang, Y., Zhou, T.: Three schemes to synchronize chaotic fractional-order Rucklidge systems. Int. J. Mod. Phys. B 21(12), 2033–2044 (2006)

    Article  Google Scholar 

  45. Jing, J., Min, L., Zhao, G.: Partial generalized synchronization theorems of differential and discrete systems. Kybernetika 44(4), 511–521 (2008)

    MATH  MathSciNet  Google Scholar 

  46. Pehlivan, I., Uyaroglu, Y., Yogun, M.: Chaotic oscillator design and realizations of the Rucklidge attractor and its synchronization and masking simulations. Sci. Res. Essays 5(16), 2210–2219 (2010)

    Google Scholar 

  47. Sundarapandian, V.: Sliding mode controller design for the global chaos synchronization of Rucklidge chaotic systems. Int. J. Bioinformatics Biosci. 2(1), 23–31 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uğur Erkin Kocamaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kocamaz, U.E., Uyaroğlu, Y. Controlling Rucklidge chaotic system with a single controller using linear feedback and passive control methods. Nonlinear Dyn 75, 63–72 (2014). https://doi.org/10.1007/s11071-013-1049-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-1049-7

Keywords

Navigation