Skip to main content
Log in

Difference map and its electronic circuit realization

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper we study the dynamical behavior of the one-dimensional discrete-time system, the so-called iterated map. Namely, a bimodal quadratic map is introduced which is obtained as an amplification of the difference between well-known logistic and tent maps. Thus, it is denoted as the so-called difference map. The difference map exhibits a variety of behaviors according to the selection of the bifurcation parameter. The corresponding bifurcations are studied by numerical simulations and experimentally. The stability of the difference map is studied by means of Lyapunov exponent and is proved to be chaotic according to Devaney’s definition of chaos. Later on, a design of the electronic implementation of the difference map is presented. The difference map electronic circuit is built using operational amplifiers, resistors and an analog multiplier. It turns out that this electronic circuit presents fixed points, periodicity, chaos and intermittency that match with high accuracy to the corresponding values predicted theoretically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Mengue, A.D., Essimbi, B.Z.C.: Secure communication using chaotic synchronization in mutually coupled semiconductor lasers. Nonlinear Dyn. 70(2), 1241–1253 (2012)

    Article  MathSciNet  Google Scholar 

  2. Wang, X.-y., Qin, X., Jessa, M.: A new pseudo-random number generator based on CML and chaotic iteration. Nonlinear Dyn. 70, 1589–1592 (2012)

    Article  Google Scholar 

  3. Patidar, V., Sud, K.K., Pareel, N.K.: A pseudo random bit generator based on chaotic logistic map and its statistical testing. Informatica 33, 441–452 (2009)

    MATH  Google Scholar 

  4. Yuan, X., Xie, Y.-X.: A design of pseudo-random bit generator based on single chaotic system. Int. J. Mod. Phys. C 23(3), 1250024 (2012)

    Article  Google Scholar 

  5. Zou, A.-M., Kumar, K.D., Pashaie, R., Farhat, N.H.: Neural network-based adaptive output feedback formation control for multi-agent systems. Nonlinear Dyn. 70, 1283–1296 (2012)

    Article  MATH  Google Scholar 

  6. Chen, Y., Fei, S., Zhang, K.: Stabilization of impulsive switched linear systems with saturated control input. Nonlinear Dyn. 69, 793–804 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Mazloom, S., Eftekhari-Moghadam, A.M.: Color image encryption based on coupled nonlinear chaotic map. Chaos Solitons Fractals 42, 1745–1754 (2009)

    Article  MATH  Google Scholar 

  8. Shatheesh Sam, I., Devaraj, P., Bhuvaneswaran, R.S.: An intertwining chaotic maps based image encryption scheme. Nonlinear Dyn. 69, 1995–2007 (2012)

    Article  MathSciNet  Google Scholar 

  9. Farschi, S.M.R., Farschi, H.: A novel chaotic approach for information hiding in image. Nonlinear Dyn. 69, 1525–1539 (2012)

    Article  MathSciNet  Google Scholar 

  10. Hussain, I., Shah, T., Gondal, M.A.: Image encryption algorithm based on PGL(2,GF(28)) S-boxes and TD-ERCS chaotic sequence. Nonlinear Dyn. 70, 181–187 (2012)

    Article  MathSciNet  Google Scholar 

  11. Kwok, H.S., Tang, W.K.S.: A fast image encryption system based on chaotic maps with finite precision representation. Chaos Solitons Fractals 32, 1518–1529 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Campos-Cantón, E., Femat, R., Pisarchik, A.N.: A family of multimodal dynamic maps. Commun. Nonlinear Sci. Numer. Simul. 9, 3457–3462 (2011)

    Article  Google Scholar 

  13. Devaney, R.: An Introduction to Chaotic Dynamical Systems, 2nd edn. Westview Press, Boulder (2003)

    MATH  Google Scholar 

  14. Kahng, B.: Redefining chaos: Devaney-chaos for piecewise continuous dynamical systems. Int. J. Math. Models Methods Appl. Sci. 3(4), 317–326 (2009)

    Google Scholar 

  15. Li, T.-Y., Yorke, J.A.: Period three implies chaos. Am. Math. Mon. 82(10), 985–992 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, C., Chen, G.: Estimating the Lyapunov exponents of discrete systems. Chaos 14, 343–346 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sano, M., Sawada, Y.: Measurement of the Lyapunov spectrum from a chaotic time series. Phys. Rev. Lett. 55, 1082–1085 (1985)

    Article  MathSciNet  Google Scholar 

  18. Yang, C., Wu, C.Q., Zhang, P.: Estimation of Lyapunov exponents from a time series for n-dimensional state space using nonlinear mapping. Nonlinear Dyn. 69, 1493–1507 (2012)

    Article  MathSciNet  Google Scholar 

  19. Suneel, M.: Electronic circuit realization of the logistic map. Sadhana 31, 69–78 (2006)

    Article  Google Scholar 

  20. Campos-Cantón, I., Campos-Cantón, E., Murguía, J.S., Rosu, H.C.: A simple electronic circuit realization of the tent map. Chaos Solitons Fractals 1, 12–16 (2009)

    Article  Google Scholar 

  21. Senani, R., Gupta, S.: Implementation of Chua’s chaotic circuit using current feedback op-amps. Electron. Lett. 34(9), 829–830 (1998)

    Article  Google Scholar 

  22. Banerjee, T.: Single amplifier biquad based inductor-free Chua’s circuit. Nonlinear Dyn. 68, 565–573 (2012)

    Article  Google Scholar 

  23. Gandhi, G.: An improved Chua’s circuit and its use in hyperchaotic circuit. Analog Integr. Circuits Signal Process. 46(2), 173–178 (2006)

    Article  Google Scholar 

  24. Matsumoto, T.: A chaotic attractor from Chua’s circuit. IEEE Trans. Circuits Syst. I 31(12), 1055–1058 (1984)

    Article  MATH  Google Scholar 

  25. Chua, L., Komuro, M., Matsumoto, T.: The double scroll family: parts I and II. IEEE Trans. Circuits Syst. I 33, 1073–1118 (1986)

    Google Scholar 

  26. Radwan, A., Soliman, A., El-Sedeek, A.: MOS realization of the double-scroll-like chaotic equation. IEEE Trans. Circuits Syst. I 50(2), 285–288 (2003)

    Article  Google Scholar 

  27. Yalcin, M., Suykens, J., Vandewalle, J., Ozoguz, S.: Families of scroll grid attractors. Int. J. Bifurc. Chaos 12(1), 23–41 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kilic, R.: On current feedback operational amplifier-based realization of Chua’s circuit. Circuits Syst. Signal Process. 22(5), 475–491 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kilic, R.: Experimental study of CFOA-based inductorless Chua’s circuit. Int. J. Bifurc. Chaos 14, 1369–1374 (2004)

    Article  MATH  Google Scholar 

  30. O’Donoghue, K., Forbes, P., Kennedy, M.: A fast and simple implementation of Chua’s oscillator with cubic-like nonlinearity. Int. J. Bifurc. Chaos 15, 2959–2972 (2005)

    Article  MATH  Google Scholar 

  31. Lü, J., Chen, G.: Generating multiscroll chaotic attractors: theories, methods and applications. Int. J. Bifurc. Chaos 16(4), 775–858 (2006)

    Article  MATH  Google Scholar 

  32. Addabbo, T., Alioto, M., Fort, A., Rocchi, S., Vignoli, V.: The digital tent map: performance analysis and optimized design as a low-complexity source of pseudorandom bits. IEEE Trans. Instrum. Meas. 55(5), 1451–1458 (2006)

    Article  Google Scholar 

  33. Perez, G., Cerdeira, H.: Extracting messages masked by chaos. Phys. Rev. Lett. 74, 1970–1973 (1995)

    Article  Google Scholar 

  34. Short, K.M., Parker, A.T.: Unmasking a hyperchaotic communication scheme. Phys. Rev. E 58, 1159–1162 (1998)

    Article  Google Scholar 

  35. Zhou, C., Lai, C.H.: Extracting messages masked by chaotic signals of time-delay systems. Phys. Rev. E 60, 320–323 (1999)

    Article  Google Scholar 

  36. Zhang, Y., Li, C., Li, Q., Zhang, D., Shu, S.: Breaking a chaotic image encryption algorithm based on perceptron model. Nonlinear Dyn. 69, 1091–1096 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Verhulst, P.F.: Notice sur la loi que la population poursuit dans son accroissement. Corresp. Math. Phys. 10, 113–121 (1838)

    Google Scholar 

  38. Holmgren, R.A.: A First Course in Discrete Dynamical Systems. Springer, New York (1996)

    Book  MATH  Google Scholar 

  39. Lynch, S.: Dynamical Systems with Applications. Birkhäuser, Boston (2010)

    MATH  Google Scholar 

  40. Wu, C.W., Rul’kov, N.F.: Studying chaos via 1-D maps—a tutorial. IEEE Trans. Circuits Syst. I 40, 707–721 (1993)

    Article  MATH  Google Scholar 

  41. Li, C.: A new method of determining chaos-parameter-region for the tent map. Chaos Solitons Fractals 21, 863–867 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  42. Huang, W.: On complete chaotic maps with tent-maps-like structures. Chaos Solitons Fractals 24, 287–299 (2005)

    MathSciNet  MATH  Google Scholar 

  43. Blakely, J.N., Eskridge, M.B., Corron, N.J.: A simple Lorenz circuit and its radio frequency implementation. Chaos 17, 023112 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

M. García-Martínez is a doctoral fellows of CONACYT (Mexico) in the Graduate Program on Control and Dynamical Systems at DMAp-IPICYT.

E. Campos-Cantón acknowledges CONACYT for the financial support through project No. 181002.

S. Čelikovský has been supported by the Czech Science Foundation through the research grant no. 13-20433S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. García-Martínez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García-Martínez, M., Campos-Cantón, I., Campos-Cantón, E. et al. Difference map and its electronic circuit realization. Nonlinear Dyn 74, 819–830 (2013). https://doi.org/10.1007/s11071-013-1007-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-1007-4

Keywords

Navigation