Skip to main content
Log in

In-plane non-linear dynamics of the stay cables

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Stay cables used in cable-stayed bridge and cable-stayed arch bridge are prone to vibration due to their inherent susceptibility to external deflection. The present work is devoted to the mitigation of a stay cable from the point of view of its nonlinear dynamics. The Galerkin integral, multiple scales perturbation method, and numerical techniques are applied to analyze the primary and subharmonic resonances of the stay cable. The nonlinear dynamic response of the stay cable subjected to parametrical and forced excitations is investigated numerically. The effects of some key parameters of the stay cable, such as initial tension force, damping and inclination angle, and the excitation frequency and amplitude are discussed. The carbon fiber reinforced polymers (CFRP) cable is also studied to understand the effect of the material properties of cable. The results show that these parameters have a considerable effect on the dynamic behavior of the cable. In particular, unreasonable tension force and inclination angle of stay cable may cause excessive vibration. It is suggested that CFRP cable replaces steel cable, which can mitigate the vibration of a stay cable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Feng, W., Gao, L.: Nonlinear vibration analysis for coupled structure of cable-stayed beam. J. Vibroeng. 21(2), 115–119 (2008)

    MathSciNet  Google Scholar 

  2. Yamaguchi, H., Migata, T., Ito, M.: Time response analysis of a cable under harmonic excitation. In: Proceedings of Japan Society of Civil Engineers, vol. 308, pp. 424–427 (1981)

    Google Scholar 

  3. Benedettini, F., Rega, G.: Nonlinear dynamics of an elastic cable under planar excitation. Int. J. Non-Linear Mech. 22, 497–509 (1987)

    Article  MATH  Google Scholar 

  4. Rega, G., Benedettini, F.: Planar nonlinear oscillations of elastic cables under superharmonic resonance conditions. J. Sound Vib. 132(3), 353–356 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. Rega, G., Benedettini, F.: Planar non-linear oscillations of elastic cables under subharmonic resonance conditions. J. Sound Vib. 132(3), 367–381 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. Uhrig, R.: On kinetic response of cables of cable-stayed bridges due to combined parametric and forced excitation. J. Sound Vib. 165(1), 182–192 (1993)

    Article  Google Scholar 

  7. Lilien, J.L., Pinto da Costa, A.: Vibration amplitudes caused by parametric excitation of cable stayed structures. J. Sound Vib. 174(1), 69–90 (1994)

    Article  MATH  Google Scholar 

  8. Warnitchai, P., Fujino, Y., Susumpow, T.: A non-linear dynamic model for cables and its application to a cable-structure system. J. Sound Vib. 187(4), 695–712 (1995)

    Article  Google Scholar 

  9. Zhang, W., Tang, Y.: Global dynamics of the cable under combined parametrical and excitations. Int. J. Non-Linear Mech. 37, 505–526 (2002)

    Article  MATH  Google Scholar 

  10. Berlioz, A., Lamarque, C.H.: A non-linear model for the dynamics of an stay cable. J. Sound Vib. 279(4), 619–639 (2005)

    Article  Google Scholar 

  11. Feng, W.M., Gao, L.L.: Nonlinear vibration analysis for coupled structure of cable-stayed beam. J. Vibroeng. 21(2), 115–119 (2008)

    MathSciNet  Google Scholar 

  12. Ren, S.Y., Gu, M.: Parametric vibration of stay cable-deck system II: Case study and parametric analysis. China Civ. Eng. J. 42(5), 85–89 (2009)

    Google Scholar 

  13. Fujino, Y., Warnitchai, P., Pacheco, B.: An experimental and analytical study of auto-parametric resonance in a 3DOF model of cable-stayed-beam. Nonlinear Dyn. 4(2), 111–138 (1993)

    Google Scholar 

  14. Costa, A.P.D., Martins, J.A.C., Branco, F., Lilien, J.L.: Oscillations of bridge stay cables induced by periodic motions of deck and/or towers. J. Eng. Mech. 122(7), 613–622 (1996)

    Article  Google Scholar 

  15. Berlioz, A., Lamarque, C.H.: A non-linear model for the dynamics of an inclined cable. J. Sound Vib. 279(3), 619–639 (2005)

    Article  Google Scholar 

  16. Berlioz, A., Lamarque, C.H.: Nonlinear vibrations of an inclined cable. J. Vib. Acoust. 127(4), 315–323 (2005)

    Article  Google Scholar 

  17. Rega, G., Alaggio, R., Benedettini, F.: Experimental investigation of the nonlinear response of a hanging cable. Part I. Local analysis. Nonlinear Dyn. 14, 89–117 (1997)

    Article  Google Scholar 

  18. Rega, G., Alaggio, R., Benedettini, F.: Experimental investigation of the nonlinear response of a hanging cable. Part II. Global analysis. Nonlinear Dyn. 14, 119–138 (1997)

    Article  Google Scholar 

  19. Zhao, Y.Y.: The theoretical model of non-linear dynamic for long-span cable-stayed bridge. Ph.D.thesis, Hunan university, Changsha (2000)

  20. Gattulli, V.: A parametric analytical model for non-linear dynamics in cable-stayed beam. Earthq. Eng. Struct. Dyn. 31, 1281–1300 (2002)

    Article  Google Scholar 

  21. Ojalvo, I.U.: Coupled twist-bending vibrations of incomplete elastic rings. Int. J. Mech. Sci. 4, 53–72 (1962)

    Article  Google Scholar 

  22. Wang, T.M., Nettleton, R.H., Keita, B.: Natural frequencies for out-of-plane vibrations of continuous curved beams. J. Sound Vib. 68(3), 427–436 (1980)

    Article  MATH  Google Scholar 

  23. Gattulli, V., Lepidi, M.: Nonlinear interactions in the planar dynamics of cable-stayed beam. Int. J. Solids Struct. 40, 4729–4748 (2003)

    Article  MATH  Google Scholar 

  24. Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics. Wiley-Interscience, New York (1995)

    Book  MATH  Google Scholar 

  25. Xiong, W., Cai, C.S., Zhang, Y., Xiao, R.: Study of super long span cable-stayed bridges with CFRP components. Eng. Struct. 33(2), 330–343 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China (11102063, 11032004, 11002030) and Australian Research Council for the financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. J. Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, H.J., Zhu, H.P., Zhao, Y.Y. et al. In-plane non-linear dynamics of the stay cables. Nonlinear Dyn 73, 1385–1398 (2013). https://doi.org/10.1007/s11071-013-0871-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-0871-2

Keywords

Navigation