Skip to main content
Log in

Stability of nonlinear time-varying perturbed differential equations

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The goal of this paper is twofold. The first part presents a converse Lyapunov theorem for the notion of uniform practical exponential stability of nonlinear differential equations in presence of small perturbation. This class of nonlinear differential equations can be viewed as parametric differential equations. The second part provides the classical perturbation method of seeking an approximate solution as a finite Taylor expansion of the exact solution. The practical asymptotic validity on the approximate is established on infinite-time interval. Finally, we give a numerical example to prove the validity of our methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. BenAbdallah, A., Dlala, M., Hammami, M.A.: A new Lyapunov function for stability of time-varying nonlinear perturbed systems. Syst. Control Lett. 56, 179–187 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. BenAbdallah, A., Ellouze, I., Hammami, M.A.: Practical stability of nonlinear time-varying cascade systems. J. Dyn. Control Syst. 15, 45–62 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ben Hamed, B., Ellouze, I., Hammami, M.A.: Practical uniform stability of nonlinear differential delay equations. Mediterr. J. Math. 8, 603–616 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ben Hamed, B., Hammami, M.A.: Practical stabilization of a class of uncertain time-varying nonlinear delay systems. J. Control Theory Appl. 7, 175–180 (2009)

    Article  MathSciNet  Google Scholar 

  5. Ben Hamed, B.: On the robust practical global stability of nonlinear time-varying systems. Mediterr. J. Math. (2012). doi:10.1007/s00009-012-0227z

    Google Scholar 

  6. Chaillet, A., Loria, A.: A converse theorem for uniform semiglobal practical asymptotic stability: application to cascaded systems. In: Proc. 45th IEEE Conf. Decis. Control, San Diego, CA, USA, December 13–15, pp. 4259–4264 (2006)

    Chapter  Google Scholar 

  7. Chaillet, A., Loria, A.: Uniform global practical asymptotic stability for time-varying cascaded systems. Eur. J. Control 12, 595–605 (2006)

    Article  MathSciNet  Google Scholar 

  8. Chaillet, A., Loria, A.: Uniform semiglobal practical asymptotic stability for non-autonomous cascaded systems and applications. Automatica 44, 337–347 (2008)

    Article  MathSciNet  Google Scholar 

  9. Corless, M.: Guaranteed rates of exponential convergence for uncertain systems. J. Optim. Theory Appl. 64, 481–494 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. Corless, M., Leitmann, G.: Bounded controllers for robust exponential convergence. J. Optim. Theory Appl. 76, 1–12 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dlala, M., Hammami, M.A.: Uniform exponential practical stability of impulsive perturbed systems. J. Dyn. Control Syst. 13, 373–386 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hammami, M.A.: On the stability of nonlinear control systems with uncertaintly. J. Dyn. Control Syst. 7, 171–179 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Karafyllis, I.: Non-uniform in time robust global asymptotic output stability. Syst. Control Lett. 54, 181–193 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Karafyllis, I., Tsinias, J.: A converse Lyapunov theorem for nonuniform in time global asymptotic stability and its application to feedback stabilization. SIAM J. Control Optim. 42, 936–965 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice-Hall, New York (2002)

    MATH  Google Scholar 

  16. Lakshmikantham, V., Leela, S., Martynyuk, A.A.: Practical Stability of Nonlinear Systems. World Scientific, Singapore (1990)

    Book  MATH  Google Scholar 

  17. Lin, Y., Sontag, E.D., Wang, Y.: A smooth converse Lyapunov theorem for robust stability. SIAM J. Control Optim. 34, 124–160 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mabrouk, M.: Triangular form for Euler-Lagrange systems with application to the global output tracking control. Nonlinear Dyn. 60, 87–98 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ryan, E.P., Leitmann, G., Corless, M.: Practical stabilizability of uncertain dynamical systems: application to robotic tracking. J. Optim. Theory Appl. 47, 235–252 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  20. Soldatos, A.G., Corless, M.: Stabilizing uncertain systems with bounded control. Dyn. Control 1, 227–238 (1991)

    Article  MathSciNet  Google Scholar 

  21. Sontag, E.D., Wang, Y.: Notions of input to output stability. Syst. Control Lett. 38, 235–248 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sontag, E.D., Wang, Y.: Lyapunov characterizations of input-to-output stability. SIAM J. Control Optim. 39, 226–249 (2001)

    Article  Google Scholar 

  23. Tsinias, J.: A converse Lyapunov theorem for non-uniform in time, global exponential robust stability. Syst. Control Lett. 44, 373–384 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Tunç, C., Ateş, M.: Stability and boundedness results for solutions of certain third order nonlinear vector differential equations. Nonlinear Dyn. 45, 273–281 (2005)

    Article  Google Scholar 

  25. Vidyasagar, M.: Nonlinear Systems Analysis. Prentice Hall, Englewood Cliffs (1993)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bassem Ben Hamed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ben Hamed, B., Haj Salem, Z. & Hammami, M.A. Stability of nonlinear time-varying perturbed differential equations. Nonlinear Dyn 73, 1353–1365 (2013). https://doi.org/10.1007/s11071-013-0868-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-0868-x

Keywords

Navigation