Skip to main content
Log in

Global stability and bifurcation analysis of a delay induced prey-predator system with stage structure

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper describes a delay induced prey–predator system with stage structure for prey. The dynamical characteristics of the system are rigorously studied using mathematical tools. The coexistence equilibria of the system is determined and the dynamic behavior of the system is investigated around coexistence equilibria. Sufficient conditions are derived for the global stability of the system. The optimal harvesting problem is formulated and solved in order to achieve the sustainability of the system, keeping the ecological balance, and maximize the monetary social benefit. Maturation time delay of prey is incorporated and the existence of Hopf bifurcation phenomenon is examined at the coexistence equilibria. It is shown that the time delay can cause a stable equilibrium to become unstable and even a switching of stabilities. Moreover, we use normal form method and center manifold theorem to examine the nature of the Hopf bifurcation. Finally, some numerical simulations are given to verify the analytical results, and the system is analyzed through graphical illustrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Kuang, Y.: Delay Differential Equations with Application in Population Dynamics. Academic Press, New York (1993)

    Google Scholar 

  2. Gopalswamy, K.: Stability and Oscillations in Delay Differential Equations of Population Dynamics. Kluwer Academic, Dordrecht (1992)

    Book  Google Scholar 

  3. Kot, M.: Elements of Mathematical Ecology. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  4. MacDonald, N.: Time Lags in Biological Models. Springer, Heidelberg (1978)

    Book  MATH  Google Scholar 

  5. Cushing, J.M.: Integro-differential Equations and Delay Model in Population Dynamics. Springer, Heidelberg (1977)

    Book  Google Scholar 

  6. Meng, X., Huo, H., Zhang, X.: Stability and global Hopf bifurcation in a delayed food web consisting of a prey and two predators. Commun. Nonlinear Sci. Numer. Simul. 16(11), 4335–4348 (2011)

    Article  MathSciNet  Google Scholar 

  7. Satio, Y., Takeuchi, Y.: A time-delay model for prey-predator growth with stage structure. Can. Appl. Math. Q. 11, 293–302 (2003)

    MathSciNet  Google Scholar 

  8. Chakraborty, K., Jana, S., Kar, T.K.: Effort dynamics of a delay-induced prey-predator system with reserve. Nonlinear Dyn. 70, 1805–1829 (2012)

    Article  MathSciNet  Google Scholar 

  9. Beretta, E., Kuang, Y.: Global analyses in some delayed ratio-dependent predator–prey systems. Nonlinear Anal. TMA 32, 381–408 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Guo, H., Chen, L.: The effects of impulsive harvest on a predator–prey system with distributed time delay. Commun. Nonlinear Sci. Numer. Simul. 14(5), 2301–2309 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Yan, X.P., Zhang, C.H.: Hopf bifurcation in a delayed Lotka–Volterra predator–prey system. Nonlinear Anal., Real World Appl. 9, 114–127 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jana, S., Chakraborty, M., Chakraborty, K., Kar, T.K.: Global stability and bifurcation of time delayed prey-predator system incorporating prey refuge. Math. Comput. Simul. 85, 57–77 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Yan, X.P., Zhang, C.H.: Hopf bifurcation in a delayed Lotka–Volterra predator–prey system. Nonlinear Anal., Real World Appl. 9, 114–127 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Meng, X.-Y., Huo, H.-F., Zhang, X.-B., Xiang, H.: Stability and Hopf bifurcation in a three-species system with feedback delays. Nonlinear Dyn. 64, 349–364 (2011)

    Article  MathSciNet  Google Scholar 

  15. Martin, A., Ruan, S.: Predator-prey models with delay and prey harvesting. J. Math. Biol. 43, 247–267 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kar, T.K., Pahari, U.K.: Non-selective harvesting in prey-predator models with delay. Commun. Nonlinear Sci. Numer. Simul. 11(4), 499–509 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chakraborty, K., Chakraborty, M., Kar, T.K.: Bifurcation and control of a bioeconomic model of prey-predator system with time delay. Nonlinear Anal. Hybrid Syst. 5(4), 613–625 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kar, T.K., Chakraborty, K., Pahari, U.K.: A prey-predator model with alternative prey: mathematical model and analysis. Can. Appl. Math. Q. 18(2), 137–168 (2010)

    MathSciNet  MATH  Google Scholar 

  19. Xu, C., Tang, X., Liao, M., Xiaofei, H.: Bifurcation analysis in a delayed Lotka–Volterra predator–prey model with two delays. Nonlinear Dyn. 66, 169–183 (2011)

    Article  Google Scholar 

  20. Chakraborty, K., Das, S., Kar, T.K.: Optimal control of effort of a stage structured prey–predator fishery model with harvesting. Nonlinear Anal., Real World Appl. 12(6), 3452–3467 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sun, X.K., Huo, H.F., Xiang, H.: Bifurcation and stability analysis in predator–prey model with a stage–structure for predator. Nonlinear Dyn. 58, 497–513 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Liu, M., Wang, K.: Global stability of stage–structured predator–prey models with Beddington–DeAngelis functional response. Commun. Nonlinear Sci. Numer. Simul. 16(9), 3792–3797 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Chakraborty, K., Jana, S., Kar, T.K.: Global dynamic sand bifurcation in a stage structured prey-predator fishery model with harvesting. Appl. Math. Comput. 218(18), 9271–9290 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhang, L., Zhang, C.: Rich dynamic of a stage–structured prey-predator model with cannibalism and periodic attacking rate. Commun. Nonlinear Sci. Numer. Simul. 15(12), 4029–4040 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Xu, R., Ma, Z.: Stability and Hopf bifurcation in a ratio-dependent predator–prey system with stage structure. Chaos Solitons Fractals 38, 669–684 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Xu, R.: Global stability and Hopf bifurcation of a predator–prey model with stage structure and delayed predator response. Nonlinear Dyn. 67, 1683–1693 (2012)

    Article  MATH  Google Scholar 

  27. Song, X.Y., Chen, L.S.: Modelling and analysis of a single species system with stage structure and harvesting. Math. Comput. Model. 36, 67–82 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Shi, R., Chen, L.: The study of a ratio-dependent predator–prey model with stage structure in the prey. Nonlinear Dyn. 58, 443–451 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhang, Y., Zhang, Q.: Dynamic behavior in a delayed stage structured population model with stochastic fluctuation and harvesting. Nonlinear Dyn. 66, 231–245 (2011)

    Article  Google Scholar 

  30. Kar, T.K., Matsuda, H.: Controllability of a harvested prey-predator system with time delay. J. Biol. Syst. 14(2), 243–254 (2006)

    Article  MATH  Google Scholar 

  31. Boncoeur, J., Alban, F., Guyader, O., Thebaud, O.: Fish, fishers, seals and tourists: economic consequences of creating a marine reserve in a multi-species, multi-activity context. Nat. Resour. Model. 15(4), 387–411 (2002)

    Article  MATH  Google Scholar 

  32. Kar, T.K., Chakraborty, K.: Marine Reserves and its consequences as a fisheries management tool. World J. Model. Simul. 5(2), 83–95 (2009)

    Google Scholar 

  33. Clark, C.W.: Mathematical Bio-economics, the Optimal Management of Renewable Resources. Wiley, New York (1990)

    Google Scholar 

  34. Berreta, E., Kuang, Y.: Geometric stability switch criteria in delay differential systems with delay dependent parameters. SIAM J. Math. Anal. 33, 1144–1165 (2002)

    Article  MathSciNet  Google Scholar 

  35. Pathak, S., Maiti, A., Bear, S.P.: Effect of time delay on a prey predator model with microparasite infection in the predator. J. Biol. Syst. 19(2), 365–387 (2011). doi:10.1142/S0218339011004032

    Article  MATH  Google Scholar 

  36. Hassard, B., Kazarinoff and, D., Wan, Y.: Theory and Application of Hopf Bifurcation. Cambridge University Press, Cambridge (1981)

    Google Scholar 

  37. Hale, J.K., Verduyn, S.M.: Introduction to Functional Differential Equations. Springer, New York (1993)

    MATH  Google Scholar 

Download references

Acknowledgements

The first author gratefully acknowledges Director, INCOIS for his encouragement and unconditional help. This is INCOIS contribution number 138.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunal Chakraborty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakraborty, K., Haldar, S. & Kar, T.K. Global stability and bifurcation analysis of a delay induced prey-predator system with stage structure. Nonlinear Dyn 73, 1307–1325 (2013). https://doi.org/10.1007/s11071-013-0864-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-0864-1

Keywords

Navigation