Skip to main content
Log in

Dynamics of self-excited oscillators with neutral delay coupling

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The work is devoted to analytic and numeric investigation of dynamical behavior in a system of two Van der Pol (VdP) oscillators coupled by a non-dispersive elastic rod. The model is rigorously reduced to a system of nonlinear neutral differential delay equations. For the case of relatively small coupling and moderate delay, an approximate analytic investigation can be accomplished by means of an averaging procedure. The region of synchronization in the space of parameters is established and characteristic bifurcations are revealed. A numeric study confirms the validity of the analytic approach in the synchronization region. Beyond this region, the averaging approach is no more valid. A multitude of quasiperiodic and chaotic-like orbits has been revealed. Especially interesting behavior occurs in the case of relatively large delays and corresponds to sequential quenching and excitation of the VdP oscillators. This regime is also explored analytically, by means of a large-delay approximation, which reduces the system to a perturbed discrete map.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abolinia, V.E., Myshkis, A.D.: Mixed problem for an almost linear hyperbolic system in the plane. Mat. Sb. 12, 423 (1960) (in Russian)

    Google Scholar 

  2. Bellman, R.E., Cooke, K.L.: Differential-Difference Equations. Academic Press, New York (1963)

    MATH  Google Scholar 

  3. Brayton, R.K., Miranker, W.L.: Oscillations in a distributed network. Arch. Ration. Mech. Anal. 17, 358 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cooke, K.L.: A linear mixed problem with derivative boundary conditions. In: Seminar on Differential Equations and Dynamical Systems (III). Lecture Series, vol. 51, p. 11. Univ. of Maryland, College Park (1970)

    Google Scholar 

  5. Rubanik, V.P.: Oscillations of Quasilinear Systems with Time Delay. Nauka, Moscow (1969) (in Russian)

    Google Scholar 

  6. Rubanik, V.P.: Oscillations of Complex Quasilinear Systems with Time Delay. Izdatel’stvo “Universitetskoe”, Minsk (1985) (in Russian)

    Google Scholar 

  7. Hale, J.K., Verduyn Lunel, S.M.: Introduction to Functional Differential Equations. Springer, New York (1993)

    MATH  Google Scholar 

  8. Gendelman, O.V.: Nonlinear normal modes in homogeneous system with time delays. Nonlinear Dyn. 52, 367–376 (2008)

    Article  MATH  Google Scholar 

  9. Azbelev, N.V., Berezansky, L., Simonov, P.M., Chistyakov, A.V.: The stability of linear systems with aftereffect. I. Differ. Equ. 23, 493 (1987)

    MathSciNet  MATH  Google Scholar 

  10. Shi, X.R., Wang, Z.L.: The alternating between complete synchronization and hybrid synchronization of hyperchaotic Lorenz system with time delay. Nonlinear Dyn. 69, 1177–1190 (2012)

    Article  MATH  Google Scholar 

  11. Xu, C., Shao, Y.: Bifurcations in a predator–prey model with discrete and distributed time delay. Nonlinear Dyn. 67, 2207–2223 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Berezansky, L., Braverman, E.: Global linearized stability theory for delay differential equations. Nonlinear Anal. 71, 2614–2624 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Landa, P.S.: Nonlinear Oscillations and Waves in Dynamical Systems. Kluwer Academic, Dordrecht (1996)

    MATH  Google Scholar 

  14. Radparvar, K., Kaplan, B.Z.: Experimental and analytical investigations of synchronization dynamics of two coupled multivibrators. IEEE Trans. Circuits Syst. 32, 1072–1078 (1985)

    Article  MATH  Google Scholar 

  15. Saito, T.: On a coupled relaxation oscillator. IEEE Trans. Circuits Syst. 35, 1147–1155 (1988)

    Article  MATH  Google Scholar 

  16. Grasman, J.: Asymptotic Methods for Relaxation Oscillations and Applications. Springer, New York (1987)

    Book  MATH  Google Scholar 

  17. Hohl, A., Gavrielides, A., Erneux, T., Kovanis, V.: Localized synchronization in two coupled nonidentical semiconductor lasers. Phys. Rev. Lett. 78, 4745–4748 (1997)

    Article  Google Scholar 

  18. Lynch, J.J., York, R.A.: Stability of mode locked states of coupled oscillator arrays. IEEE Trans. Circuits Syst. 42, 413–417 (1995)

    Article  Google Scholar 

  19. York, R.A.: Nonlinear analysis of phase relationships in quasi-optical oscillator arrays. IEEE Trans. Microw. Theory Tech. 41, 1799–1809 (1993)

    Article  Google Scholar 

  20. Wirkus, S., Rand, R.H.: The dynamics of two coupled van der Pol oscillators with delay coupling. Nonlinear Dyn. 30, 205–211 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Song, Y.: Hopf bifurcation and spatio-temporal patterns in delay-coupled van der Pol oscillators. Nonlinear Dyn. 63, 223–237 (2011)

    Article  MATH  Google Scholar 

  22. Li, X., Ji, J.C., Hansen, C.H.: Dynamics of two delay coupled van der Pol oscillators. Mech. Res. Commun. 33, 614–627 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Heckman, C.R., Rand, R.H.: Dynamics of microbubble oscillators with delay coupling. Nonlinear Dyn. 71, 121–132 (2012)

    Article  Google Scholar 

  24. Van der Pol, B.: A theory of the amplitude of free and forced triode vibrations. Radio Rev. 1, 701–710, 754–762 (1920)

    Google Scholar 

  25. Manevitch, L.I.: Complex representation of dynamics of coupled nonlinear oscillators. In: Uvarova, L., Arinstein, A., Latyshev, A. (eds.) Mathematical Models of Non-Linear Excitations, Transfer Dynamics and Control in Condensed Systems and Other Media. Kluwer Academic/Plenum Publishers, New York (1999)

    Google Scholar 

  26. Manevitch, L.I., Gendelman, O.V.: Tractable Modes in Solid Mechanics. Springer, Berlin (2011)

    Book  Google Scholar 

  27. Kevorkian, J., Cole, J.D.: Multiple Scale and Singular Perturbation Methods. Springer, New York (1996)

    Book  MATH  Google Scholar 

  28. Thompson, S., Shampine, L.: A friendly Fortran DDE solver. Appl. Numer. Math. 56, 503–516 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Owren, B., Zennaro, M.: Derivation of efficient continuous explicit Runge–Kutta methods. SIAM J. Sci. Stat. Comput. 13, 1488–1501 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  30. Erneux, T.: Applied Delay Differential Equations. Springer, New York (2009)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Gendelman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edelman, K., Gendelman, O.V. Dynamics of self-excited oscillators with neutral delay coupling. Nonlinear Dyn 72, 683–694 (2013). https://doi.org/10.1007/s11071-012-0745-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-012-0745-z

Keywords

Navigation