Skip to main content
Log in

A comparison of stability computational methods for periodic solution of nonlinear problems with application to rotordynamics

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper a comparative study of five different stability computational methods based on the Floquet theory is presented. These methods are compared in terms of accuracy and CPU performance. Tests are performed on a set of nonlinear problems relevant to rotating machinery with rotor-to-stator contact and a variable number of degrees of freedom, whose periodic solutions are computed with the Harmonic Balance Method (HBM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sundararajan, P., Noah, S.T.: An algorithm for response and stability of large order non-linear systems—application to rotor systems. J. Sound Vib. 214(4), 695–723 (1998). doi:10.1006/jsvi.1998.1614

    Article  Google Scholar 

  2. Nataraj, C., Nelson, H.D.: Periodic solutions in rotor dynamic systems with nonlinear supports: a general approach. J. Vib. Acoust. 111(2), 187–193 (1989). doi:10.1115/1.3269840

    Article  Google Scholar 

  3. Von Groll, G., Ewins, D.J.: The harmonic balance method with arc-length continuation in rotor/stator contact problems. J. Sound Vib. 241(2), 223–233 (2001). doi:10.1006/jsvi.2000.3298

    Article  Google Scholar 

  4. Friedmann, P., Hammond, C.E., Woo, T.H.: Efficient numerical treatment of periodic systems with application to stability problems. Int. J. Numer. Methods Eng. 11(7), 1117–1136 (1977). doi:10.1002/nme.1620110708

    Article  MathSciNet  MATH  Google Scholar 

  5. Friedmann, P.: Numerical methods for determining the stability and response of periodic systems with applications to helicopter rotor dynamics and aeroelasticity. Comput. Math. Appl. 12(1, Part A), 131–148 (1986). doi:10.1016/0898-1221(86)90091-X

    Article  Google Scholar 

  6. Gaonkar, G.H., Simha Prasad, D.S., Sastry, D.: On computing Floquet transition matrices of rotorcraft. J. Am. Helicopter Soc. 26(3), 56–61 (1981). doi:10.4050/JAHS.26.56

    Article  Google Scholar 

  7. Sinha, S., Wu, D.H.: An efficient computational scheme for the analysis of periodic systems. J. Sound Vib. 151(1), 91–117 (1991). doi:10.1016/0022-460X(91)90654-3

    Article  MathSciNet  Google Scholar 

  8. Wu, D.H., Sinha, S.: A new approach in the analysis of linear systems with periodic coefficients for applications in rotorcraft dynamics. J. R. Aeronaut. Soc. 1, 8–16 (1994)

    Google Scholar 

  9. Liaw, C.Y., Koh, C.G.: Dynamic stability and chaos of system with piecewise linear stiffness. J. Eng. Mech. 119, 1542–1558 (1993)

    Article  Google Scholar 

  10. Raghothama, A., Narayanan, S.: Bifurcation and chaos in geared rotor bearing system by incremental harmonic balance method. J. Sound Vib. 226(3), 469–492 (1999). doi:10.1006/jsvi.1999.2264

    Article  Google Scholar 

  11. Zheng, T., Hasebe, N.: An efficient analysis of high-order dynamical system with local nonlinearity. J. Vib. Acoust. 121(3), 408–416 (1999). doi:10.1115/1.2893995

    Article  Google Scholar 

  12. Kim, Y.B., Noah, S.T.: Quasi-periodic response and stability analysis for a non-linear Jeffcott rotor. J. Sound Vib. 190(2), 239–253 (1996). doi:10.1006/jsvi.1996.0059

    Article  Google Scholar 

  13. Shen, J., Lin, K., Chen, S., Sze, K.: Bifurcation and route-to-chaos analyses for Mathieu-duffing oscillator by the incremental harmonic balance method. Nonlinear Dyn. 52(4), 403–414 (2008)

    Article  MATH  Google Scholar 

  14. Rook, T.: An alternate method to the alternating time-frequency method. Nonlinear Dyn. 27, 327–339 (2002). doi:10.1023/A:1015238500024

    Article  MathSciNet  MATH  Google Scholar 

  15. Sinha, S.K.: Dynamic characteristics of a flexible bladed-rotor with coulomb damping due to tip-rub. J. Sound Vib. 273(4–5), 875–919 (2004). doi:10.1016/S0022-460X(03)00647-3

    Article  Google Scholar 

  16. Petrov, E.P., Ewins, D.J.: Analytical formulation of friction interface elements for analysis of nonlinear multi-harmonic vibrations of bladed disks. J. Turbomach. 125(2), 364–371 (2003). doi:10.1115/1.1539868

    Article  Google Scholar 

  17. Lau, S.L., Cheung, Y.K., Wu, S.Y.: A variable parameter incrementation method for dynamic instability of linear and nonlinear elastic systems. J. Appl. Mech. 49(4), 849–853 (1982). doi:10.1115/1.3162626

    Article  MATH  Google Scholar 

  18. Cameron, T.M., Griffin, J.H.: An alternating frequency/time domain method for calculating the steady-state response of nonlinear dynamic systems. J. Appl. Mech. 56(1), 149–154 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hsu, C.S.: Impulsive parametric excitation: theory. J. Appl. Mech. 39(2), 551–558 (1972)

    Article  MATH  Google Scholar 

  20. Cardona, A., Lerusse, A., Géradin, M.: Fast Fourier nonlinear vibration analysis. Comput. Mech. 22(2), 128–142 (1998)

    Article  MATH  Google Scholar 

  21. Peeters, M., Viguié, R., Sérandour, G., Kerschen, G., Golinval, J.C.: Nonlinear normal modes, part ii: toward a practical computation using numerical continuation techniques. Mech. Syst. Signal Process. 23(1), 195–216 (2009). doi:10.1016/j.ymssp.2008.04.003

    Article  Google Scholar 

  22. Ibrahim, S., Patel, B., Nath, Y.: Modified shooting approach to the non-linear periodic forced response of isotropic/composite curved beams. Int. J. Non-Linear Mech. 44(10), 1073–1084 (2009). doi:10.1016/j.ijnonlinmec.2009.08.004

    Article  Google Scholar 

  23. Bauchau, O.A., Nikishkov, Y.G.: An implicit transition matrix approach to stability analysis of flexible multi-body systems. Multibody Syst. Dyn. 5, 279–301 (2001). doi:10.1023/A:1011488504973

    Article  MathSciNet  MATH  Google Scholar 

  24. Pernot, S., Lamarque, C.H.: A wavelet-Galerkin procedure to investigate time-periodic systems: transient vibration and stability analysis. J. Sound Vib. 245(5), 845–875 (2001). doi:10.1006/jsvi.2001.3610

    Article  Google Scholar 

  25. Pernot, S., Lamarque, C.H.: A wavelet-balance method to investigate the vibrations of nonlinear dynamical systems. Nonlinear Dyn. 32, 33–70 (2003). doi:10.1023/A:1024263917587

    Article  MathSciNet  MATH  Google Scholar 

  26. Lazarus, A., Thomas, O.: A harmonic-based method for computing the stability of periodic solutions of dynamical systems. C. R., Méc. 338(9), 510–517 (2010). doi:10.1016/j.crme.2010.07.020

    Article  MATH  Google Scholar 

  27. EDF R&D: Code_Aster: a general code for structural dynamics simulation under gnu gpl licence (2001). URL http://www.code-aster.org

  28. Jones, E., Oliphant, T., Peterson, P.: Scipy: Open source scientific tools for Python. (2001). URL http://www.scipy.org/

  29. Lalanne, M., Ferraris, G.: Rotordynamics Prediction in Engineering. Wiley, New York (1998)

    Google Scholar 

  30. Hahn, E.J., Chen, P.Y.P.: Harmonic balance analysis of general squeeze film damped multidegree-of-freedom rotor bearing systems. J. Tribol. 116(3), 499–507 (1994). doi:10.1115/1.2928872

    Article  Google Scholar 

  31. Sarrouy, E., Sinou, J.J.: Advances in Vibration Analysis Research, Chap. Non-Linear Periodic and Quasi-Periodic Vibrations in Mechanical Systems—On the Use of the Harmonic Balance Methods, pp. 419–434. InTech, Rijeka (2011). doi:10.5772/15638

    Google Scholar 

  32. Gabale, A.P., Sinha, S.: Model reduction of nonlinear systems with external periodic excitations via construction of invariant manifolds. J. Sound Vib. 330(11), 2596–2607 (2011). doi:10.1016/j.jsv.2010.12.013

    Article  Google Scholar 

  33. Newmark, N.M.: A method of computation for structural dynamics. J. Eng. Mech. Div. 85(EM3), 2596–2607 (1959)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the French National Agency (ANR) in the framework of its Technological Research COSINUS program (IRINA, project ANR 09 COSI 008 01 IRINA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loïc Peletan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peletan, L., Baguet, S., Torkhani, M. et al. A comparison of stability computational methods for periodic solution of nonlinear problems with application to rotordynamics. Nonlinear Dyn 72, 671–682 (2013). https://doi.org/10.1007/s11071-012-0744-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-012-0744-0

Keywords

Navigation