Skip to main content

Advertisement

Log in

A new method for predicting the maximum vibration amplitude of periodic solution of non-linear system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

An original method based on the proposed framework for calculating the maximum vibration amplitude of periodic solution of non-linear system is presented. The problem of determining the worst maximum vibration is transformed into a non-linear optimization problem. The harmonic balance method and the Hill method are selected to construct the general non-linear equality and inequality constraints. The resulting constrained maximization problem is then solved by using the MultiStart algorithm. Finally, the effectiveness of the proposed approach is illustrated through two numerical examples. Numerical examples show that the proposed method can, at much lower cost, give results with higher accuracy as compared with numerical results obtained by a parameter continuation method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cameron, T.M., Griffin, J.H.: An alternating frequency time domain method for calculating the steady state response of nonlinear dynamic systems. J. Appl. Mech. 56(1), 149–154 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  2. Hall, K.C., Thomas, J.P., Clark, W.S.: Computation of unsteady nonlinear flows in cascades using a harmonic balance technique. AIAA J. 40(5), 879–886 (2002)

    Article  Google Scholar 

  3. Liu, L., Thomas, J.P., Dowell, E.H., Attar, P., Hall, K.C.: A comparison of classical and high dimensional harmonic balance approaches for a Duffing oscillator. J. Comput. Phys. 215(1), 298–320 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Coudeyras, N., Sinou, J.-J., Nacivet, S.: A new treatment for predicting the self-excited vibrations of nonlinear systems with frictional interfaces: the constrained harmonic balance method, with application to disc brake squeal. J. Sound Vib. 319(3–5), 1175–1199 (2009)

    Article  Google Scholar 

  5. Cochelin, B., Vergez, C.: A high order purely frequency-based harmonic balance formulation for continuation of periodic solutions. J. Sound Vib. 324(1–2), 243–262 (2009)

    Article  Google Scholar 

  6. Jaumouille, V., Sinou, J.J., Petitjean, B.: An adaptive harmonic balance method for predicting the nonlinear dynamic responses of mechanical systems-application to bolted structures. J. Sound Vib. 329(19), 4048–4067 (2010)

    Article  Google Scholar 

  7. Thomsen, J.J.: Vibrations and Stability: Advanced Theory, Analysis, and Tools. Springer, Berlin (2003)

    Google Scholar 

  8. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1995)

    Book  Google Scholar 

  9. Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods. Wiley-Interscience, New York (1995)

    Book  MATH  Google Scholar 

  10. Groll, G., von Ewins, D.J.: The harmonic balance method with arc-length continuation in rotor/stator contact problems. J. Sound Vib. 241(2), 223–233 (2001)

    Article  Google Scholar 

  11. Ribeiro, P.: Nonlinear forced vibrations of thin/thick beams and plates by the finite element and shooting methods. Comput. Struct. 82, 1413–1423 (2004)

    Article  Google Scholar 

  12. Sundararajan, P., Noah, S.T.: Dynamics of forced nonlinear systems using shooting/arclength continuation method—application to rotor systems. J. Vib. Acoust. 119, 9–20 (1997)

    Article  Google Scholar 

  13. Dimitriadis, G.: Continuation of higher-order harmonic balance solutions for nonlinear aeroelastic systems. J. Aircr. 45(2), 523–537 (2008)

    Article  Google Scholar 

  14. Ribeiro, P.: Non-linear free periodic vibrations of open cylindrical shallow shells. J. Sound Vib. 313, 224–245 (2008)

    Article  Google Scholar 

  15. Stoykov, S., Ribeiro, P.: Periodic geometrically nonlinear free vibrations of circular plates. J. Sound Vib. 315, 536–555 (2008)

    Article  Google Scholar 

  16. Kerschen, G., Peeters, M., Golinval, J.C., Vakakis, A.F.: Nonlinear normal modes, part I: a useful framework for the structural dynamicist. Mech. Syst. Signal Process. 23(1), 170–194 (2009)

    Article  Google Scholar 

  17. Peeters, M., Viguié, R., Sérandour, G., et al.: Nonlinear normal modes, part II: toward a practical computation using numerical continuation techniques. Mech. Syst. Signal Process. 23(1), 195–216 (2009)

    Article  Google Scholar 

  18. Georgiades, F., Peeters, M., et al.: Modal analysis of a nonlinear periodic structure with cyclic symmetry. AIAA J. 47, 1014–1025 (2009)

    Article  Google Scholar 

  19. Lazarus, A., Thomas, O.: A harmonic-based method for computing the stability of periodic solutions of dynamical systems. C. R., Méc. 338(9), 510–517 (2010)

    Article  MATH  Google Scholar 

  20. Grolet, A., Thouverez, F.: Vibration analysis of a nonlinear system with cyclic symmetry. J. Eng. Gas Turbines Power 133(2), 022502-01/022502-09 (2011)

    Article  Google Scholar 

  21. Sarrouy, E., Grolet, A., Thouverez, F.: Global and bifurcation analysis of a structure with cyclic symmetry. Int. J. Non-Linear Mech. 46(5), 727–737 (2011)

    Article  Google Scholar 

  22. Allgower, E.L., Georg, K.: Introduction to Numerical Continuation Methods. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  23. Petrov, E.P.: Analysis of sensitivity and robustness of forced response for nonlinear dynamic structures. Mech. Syst. Signal Process. 23(1), 68–86 (2009)

    Article  Google Scholar 

  24. Petrov, E.P.: Direct parametric analysis of resonance regimes for nonlinear vibrations of bladed discs. J. Turbomach. 129, 495–502 (2007)

    Article  Google Scholar 

  25. Petrov, E.P., Ewins, D.J.: Effects of damping and varying contact area at blade-disk joints in forced response analysis of bladed disk assemblies. J. Turbomach. 128(2), 403–410 (2006)

    Article  Google Scholar 

  26. Petrov, E.P.: Method for direct parametric analysis of nonlinear forced response of bladed discs with friction contact interfaces. J. Turbomach. 126, 654–662 (2004)

    Article  Google Scholar 

  27. Chan, Y.-J., Ewins, D.J.: A comprehensive set of procedures to estimate the probability of extreme vibration levels due to mistuning. J. Eng. Gas Turbines Power 132, 112505 (2010)

    Article  Google Scholar 

  28. Ugray, Z., Lasdon, L., Plummer, J., et al.: Scatter search and local NLP Solvers: a multistart framework for global optimization. INFORMS J. Comput. 9(3), 328–340 (2007)

    Article  MathSciNet  Google Scholar 

  29. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer Series in Operations Research. Springer, New York (1999)

    Book  MATH  Google Scholar 

  30. Fletche, R.: Practical Methods of Optimization. Wiley, New York (1987)

    Google Scholar 

  31. Ghayesh, M.H., Amabili, M., Païdoussis, M.P.: Nonlinear vibrations and stability of an axially moving beam with an intermediate spring support: two-dimensional analysis. Nonlinear Dyn. 69(1–2), 193–210 (2012)

    Article  Google Scholar 

  32. Tang, Y.Q., Chen, L.Q., Yang, X.D.: Parametric resonance of axially moving Timoshenko beams with time-dependent speed. Nonlinear Dyn. 58(4), 715–724 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Fey, R.H.B., Mallon, N.J., Kraaij, C.S., Nijmeijer, H.: Nonlinear resonances in an axially excited beam carrying a top mass: simulations and experiments. Nonlinear Dyn. 66(3), 285–302 (2011)

    Article  MathSciNet  Google Scholar 

  34. Huang, J.L., Su, R.K.L., Li, W.H., Chen, S.H.: Stability and bifurcation of an axially moving beam tuned to three-to-one internal resonances. J. Sound Vib. 330(3), 471–485 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The author is grateful to the anonymous referees for their valuable comments. This study has been financially supported by Natural Science Foundation of China (Project No. 10904178).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haitao Liao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liao, H., Sun, W. A new method for predicting the maximum vibration amplitude of periodic solution of non-linear system. Nonlinear Dyn 71, 569–582 (2013). https://doi.org/10.1007/s11071-012-0682-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-012-0682-x

Keywords

Navigation