Skip to main content
Log in

Cross-sample entropy statistic as a measure of synchronism and cross-correlation of stock markets

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we employ cross-sample entropy (cross-SampEn), transfer entropy, and detrended cross-correlation analysis (DCCA) measurement to investigate the relationship between time series among different stock markets. Cross-SampEn method is used to compare the returns of every two stock index time series to assess their degree of asynchrony. Transfer entropy is applied to measure the information flow between two financial time series and this model-free approach in principle allows us to detect statistical dependencies of all types. We use DCCA method to quantify the cross-correlations of two non-stationary time series. We report the results of synchronism and cross-correlation behaviors in US and Chinese stock markets in periods 1991–1998 (before the Asian currency crisis) and 1999–2008 (after the Asian currency crises) by using cross-SampEn, transfer entropy and DCCA methods, respectively. The results, through the contrast description of the three methods, show that the synchronism and cross-correlation become higher after the Asian currency crises, especially for the three Chinese stock index time series. Among all these consequences, ShangZheng and ShenCheng show the strongest synchronism, information transfer and cross-correlation. While the three US stock markets show a good cross-correlation and information transfer, but less synchronism before the Asian currency crisis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mantegna, R.N., Stanley, H.E.: Scaling behaviour in the dynamics of an economic index. Nature 376, 46–49 (1995)

    Article  Google Scholar 

  2. Mantegna, R.N., Stanley, H.E.: An Introduction to Econophysics: Correlations and Complexity in Finance. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  3. Laloux, L., Cizeau, P., Bouchaud, J.P., Potters, M.: Noise dressing of financial correlation matrices. Phys. Rev. Lett. 83, 1467–1470 (1999)

    Article  Google Scholar 

  4. Plerou, V., Gopikrishnan, P., Rosenow, B., Amaral, L.A.N., Stanley, H.E.: Universal and nonuniversal properties of cross correlations in financial time series. Phys. Rev. Lett. 83, 1471–1474 (1999)

    Article  Google Scholar 

  5. Ma, W.J., Hu, C.K., Amritkar, R.E.: Stochastic dynamical model for stock-stock correlations. Phys. Rev. E 70, 026101 (2004)

    Article  Google Scholar 

  6. Arthur, W.B., Durlauf, S.N., Lane, D.A.: The Economy as an Evolving Complex System II. Perseus Books, Cambridge (1997)

    Google Scholar 

  7. Mantegna, R.N., Stanley, H.E.: An Introduction to Econophysics. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  8. Bouchaud, J.P., Potters, M.: Theory of Financial Risks. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  9. Mandelbrot, B.B.: Scaling in financial prices: II. Multifractals and the star equation. Quant. Finance 1, 124 (2001)

    Article  MathSciNet  Google Scholar 

  10. Kullmann, L., Kert´esz, J., Mantegna, R.N.: Identification of clusters of companies in stock indices via Potts super-paramagnetic transitions. Physica A 287, 412 (2000)

    Article  Google Scholar 

  11. Giada, L., Marsili, M.: Algorithms of maximum likelihood data clustering with applications. Physica A 315, 650 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Marschinski, R., Kantz, H.: Analysing the information flow between financial time series. An improved estimator for transfer entropy. Eur. Phys. J. B 30, 275–281 (2002)

    Article  MathSciNet  Google Scholar 

  13. Liu, L.Z., Qian, X.Y., Lu, H.Y.: Cross-Sample entropy of foreign exchange time series. Physica A 389, 4785–4792 (2010)

    Article  Google Scholar 

  14. Pincus, S., Singer, B.: Randomness and degrees of irregularity. Proc. Natl. Acad. Sci. USA 93, 2083–2088 (1995)

    Article  MathSciNet  Google Scholar 

  15. Pincus, S.M., Mulligan, T., Iranmanesh, A., Gheorghiu, S., Godschalk, M., Veldhuis, J.D.: Older males secrete luteinizing hormone and testosterone more irregularly and jointly more asynchronously than younger males. Proc. Natl. Acad. Sci. USA 93, 14100–14105 (1996)

    Article  Google Scholar 

  16. Richman, J.S., Moorman, J.R.: Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol., Heart Circ. Physiol. 278, 2039–2049 (2000)

    Google Scholar 

  17. Schreiber, T.: Measuring information transfer. Phys. Rev. Lett. 85, 461–464 (2000)

    Article  Google Scholar 

  18. Marschinski, R., Kantz, H.: Analysing the information flow between financial time series, an improved estimator for transfer entropy. Eur. Phys. J. B 30, 275–281 (2002)

    Article  MathSciNet  Google Scholar 

  19. Kwon, O., Yang, J.S.: Information flow between composite stock index and individual stocks. Physica A 387, 2851–2856 (2008)

    Article  Google Scholar 

  20. Peng, C.K., Buldyrev, S.V., Havlin, S., Simons, M., Stanley, H.E., Goldberger, A.L.: Mosaic organization of DNA sequences. Phys. Rev. E 49, 1685–1689 (1994)

    Article  Google Scholar 

  21. Podobnik, B., Stanley, H.E.: Detrended cross-correlation analysis: a new method for analyzing two nonstationary time series. Phys. Rev. Lett. 100, 084102 (2008)

    Article  Google Scholar 

  22. Lin, A.J., Shang, P.J., Zhao, X.J.: The cross-correlations of stock markets based on DCCA and time delay DCCA. Nonlinear Dyn. 67, 425–435 (2012)

    Article  MathSciNet  Google Scholar 

  23. Lake, D.E., Richman, J.S., Griffin, M.P., Moorman, J.R.: Sample entropy analysis of neonatal heart rate variability. Am. J. Physiol., Regul. Integr. Comp. Physiol. 283, 789–797 (2002)

    Google Scholar 

  24. Shannon, C.E., Weaver, W.: The Mathematical Theory of Information. University of Illinois Press, Urbana (1949)

    Google Scholar 

  25. Kolmogorov, A.N.: Information Theory and the Theory of Algorithms vol. 3. Kluwer, Dordrecht (1993). Selected works

    MATH  Google Scholar 

  26. Billingsley, P.: Ergodic Theory and Information. Wiley, New York (1965)

    MATH  Google Scholar 

  27. Baek, S.K., Jung, W.S., Kwon, O., Moon, H.T.: Transfer entropy analysis of the stock market. physics/0509014 (2005)

Download references

Acknowledgements

The financial support from the funds of the State Key Laboratory of Rail Traffic Control and Safety (RCS2010ZT006), the China National Science (60772036, 61071142), and the National High Technology Research Development Program of China (863 Program) (2011AA110303) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengjian Shang.

Appendix

Appendix

Fig. 6
figure 6

Probability of states for (a) ShangZheng, (b) ShenCheng, (c) HSI, (dDJI, (eNAS, (fS&P500 of Data B as a function of d

Fig. 7
figure 7figure 7

DCCA analysis of stock returns

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, W., Shang, P. Cross-sample entropy statistic as a measure of synchronism and cross-correlation of stock markets. Nonlinear Dyn 71, 539–554 (2013). https://doi.org/10.1007/s11071-012-0680-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-012-0680-z

Keywords

Navigation