Skip to main content
Log in

Complete dynamical analysis of a neuron model

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In-depth understanding of the generic mechanisms of transitions between distinct patterns of the activity in realistic models of individual neurons presents a fundamental challenge for the theory of applied dynamical systems. The knowledge about likely mechanisms would give valuable insights and predictions for determining basic principles of the functioning of neurons both isolated and networked. We demonstrate a computational suite of the developed tools based on the qualitative theory of differential equations that is specifically tailored for slow–fast neuron models. The toolkit includes the parameter continuation technique for localizing slow-motion manifolds in a model without need of dissection, the averaging technique for localizing periodic orbits and determining their stability and bifurcations, as well as a reduction apparatus for deriving a family of Poincaré return mappings for a voltage interval. Such return mappings allow for detailed examinations of not only stable fixed points but also unstable limit solutions of the system, including periodic, homoclinic and heteroclinic orbits. Using interval mappings we can compute various quantitative characteristics such as topological entropy and kneading invariants for examinations of global bifurcations in the neuron model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Steriade, M., McCormick, D.A., Sejnowski, T.J.: Thalamocortical oscillations in the sleeping and aroused brain. Science 262(5134), 679–685 (1993)

    Article  Google Scholar 

  2. Terman, D., Rubin, J.E., Yew, A.C., Wilson, C.J.: Activity patterns in a model for the subthalamopallidal network of the basal ganglia. J. Neurosci. 22(7), 2963–2976 (2002)

    Google Scholar 

  3. Bazhenov, M., Timofeev, I., Steriade, M., Sejnowski, T.: Spiking-bursting activity in the thalamic reticular nucleus initiates sequences of spindle oscillations in thalamic networks. J. Neurophysiol. 84(2), 1076–1087 (2000)

    Google Scholar 

  4. Bazhenov, M., Timofeev, I., Fröhlich, F., Sejnowski, T.J.: Cellular and network mechanisms of electrographic seizures. Drug Discov. Today Dis. Models 5(1), 45–57 (2008)

    Article  Google Scholar 

  5. Cymbalyuk, G.S., Gaudry, Q., Masino, M.A., Calabrese, R.L.: Bursting in leech heart interneurons: Cell-autonomous and network-based mechanisms. J. Neurosci. 22(24), 10580–10592 (2002)

    Google Scholar 

  6. Bertram, R., Butte, M.J., Kiemel, T., Sherman, A.: Topological and phenomenological classification of bursting oscillations. Bull. Math. Biol. 57(3), 413–439 (1995)

    MATH  Google Scholar 

  7. Canavier, C.C., Baxter, D.A., Clark, J.W., Byrne, J.H.: Nonlinear dynamics in a model neuron provide a novel mechanism for transient synaptic inputs to produce long-term alterations of postsynaptic activity. J. Neurophysiol. 69(6), 2252–2257 (1993)

    Google Scholar 

  8. Butera, R.J.: Multirhythmic bursting. Chaos 8(1), 274–284 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Frohlich, F., Bazhenov, M.: Coexistence of tonic firing and bursting in cortical neurons. Phys. Rev. E, Stat. Nonlinear Soft Matter Phys. 74(3 Pt 1), 031922 (2006)

    Article  Google Scholar 

  10. Hounsgaard, J., Kiehn, O.: Serotonin-induced bistability of turtle motoneurones caused by a nifedipine-sensitive calcium plateau potential. J. Physiol. 414, 265 (1898)

    Google Scholar 

  11. Lechner, H., Baxter, F., Clark, C., Byrne, J.: Bistability and its regulation by Serotonin in the endogenously bursting neuron r15 in aplysia. J. Neurophysiol. 75, 957 (1996)

    Google Scholar 

  12. Turrigiano, G., Marder, E., Abbott, L.: Cellular short-term memory from a slow potassium conductance. J. Neurophysiol. 75, 963–966 (1996)

    Google Scholar 

  13. Kopell, N.: Toward a theory of modelling central pattern generators. In: Cohen, A.H., Rossingol, S., Grillner, S. (eds.) Neural Control of Rhythmic Movements in Vertebrates. Wiley, New York (1988)

    Google Scholar 

  14. Marder, E., Calabrese, R.L.: Principles of rhythmic motor pattern generation. Physiol. Rev. 76(3), 687–717 (1996)

    Google Scholar 

  15. Briggman, K.L., Kristan, W.B.: Multifunctional pattern-generating circuits. Annu. Rev. Neurosci. 31, 271–294 (2008)

    Article  Google Scholar 

  16. Kristan, W.B.: Neuronal decision-making circuits. Curr. Biol. 18(19), R928–R932 (2008)

    Article  Google Scholar 

  17. Shilnikov, A.L., Gordon, R., Belykh, I.: Polyrhythmic synchronization in bursting networking motifs. Chaos 18(3), 037120 (2008)

    Article  MathSciNet  Google Scholar 

  18. Wojcik, J., Clewley, R., Shilnikov, A.L.: Order parameter for bursting polyrhythms in multifunctional central pattern generators. Phys. Rev. E, Stat. Nonlinear Soft Matter. Phys. (2011, in press)

  19. Rabinovich, M.I., Varona, P., Silverston, A.L., Abarbanel, H.D.: Dynamics principles in neuroscience. Rev. Mod. Phys. 78(4), 1213–1265 (2006)

    Article  Google Scholar 

  20. Rinzel, J.: Bursting oscillations in an excitable membrane model. In: Lecture Notes in Mathematics, vol. 1151, pp. 304–316 (1985)

    Google Scholar 

  21. Rinzel, J., Wang, X.J.: Oscillatory and bursting properties of neurons. In: Arbib, M. (ed.) The Handbook of Brain Theory and Neural Networks, pp. 686–691. MIT Press, Cambridge (1995)

    Google Scholar 

  22. Rinzel, J., Ermentrout, B.: Analysis of neural excitability and oscillations. In: Koch, C., Segev, I. (eds.) Computational Neuroscience, pp. 135–169. MIT Press, Cambridge (1998)

    Google Scholar 

  23. Guckenheimer, J.: Towards a global theory of singularly perturbed systems. Prog. Nonlinear Differ. Equ. Appl. 19, 214–225 (1996)

    MathSciNet  Google Scholar 

  24. Izhikevich, E.M.: Neural excitability, spiking and bursting. Int. J. Bifurc. Chaos 10, 1171–1266 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Izhikevich, E.M.: Dynamical Systems in Neuroscience. The Geometry of Excitability and Bursting. MIT Press, Cambridge (2007)

    Google Scholar 

  26. Tikhonov, A.N.: On the dependence of solutions of differential equations from a small parameter. Mat. Sb. 22(64), 193–204 (1948)

    Google Scholar 

  27. Pontryagin, L.S., Rodygin, L.V.: Periodic solution of a system of ordinary differential equations with a small parameter in the terms containing derivatives. Sov. Math. Dokl. 1, 611–619 (1960)

    MathSciNet  MATH  Google Scholar 

  28. Fenichel, F.: Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equ. 31, 53–98 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mischenko, E.F., Rozov, N.K.: Differential Equations with Small Parameters and Relaxation Oscillations. Plenum, New York (1980)

    Google Scholar 

  30. Mischenko, E.F., Kolesov, Yu.S., Kolesov, A.Yu., Rozov, N.Kh.: Asymptotic Methods in Singularly Perturbed Systems. Monographs in Contemporary Mathematics. Consultants Bureau, New York (1994)

    Book  Google Scholar 

  31. Jones, C.K.R.T., Kopell, N.: Tracking invariant-manifolds with differential forms in singularly perturbed systems. J. Differ. Equ. 108(1), 64–88 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  32. Arnold, V.I., Afraimovich, V.S., Ilyashenko, Yu.S., Shilnikov, L.P.: Dynamical Systems. Vol. V: Bifurcation Theory. Encyclopaedia of Mathematical Sciences. Springer, Berlin (1994)

    Google Scholar 

  33. Terman, D.: The transition from bursting to continuous spiking in excitable membrane models. J. Nonlinear Sci. 2(2), 135–182 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  34. Holden, A.V., Fan, Y.S.: From simple to simple bursting oscillatory behaviour via intermittent chaos in the Rose–Hindmarsh model for neuronal activity. Chaos Solitons Fractals 2, 349–369 (1992)

    Article  MATH  Google Scholar 

  35. Wang, X.J.: Genesis of bursting oscillations in the Hindmarsh–Rose model and homoclinicity to a chaotic saddle. Physica D 62(1–4), 263–274 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  36. Feudel, U., Neiman, A., Pei, X., Wojtenek, W., Braun, H., Huber, M., Moss, F.: Homoclinic bifurcation in a Hodgkin–Huxley model of thermally sensitive neurons. Chaos 10(1), 231–239 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  37. Deng, B., Hines, G.: Food chain chaos due to Shilnikov’s orbit. Chaos 12(3), 533–538 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  38. Shilnikov, A.L., Rulkov, N.F.: Subthreshold oscillations in a map-based neuron model. Phys. Lett. A 328(2–3), 177–184 (2004)

    Article  MATH  Google Scholar 

  39. Shilnikov, A.L., Calabrese, R.L., Cymbalyuk, G.: Mechanism of bistability: Tonic spiking and bursting in a neuron model. Phys. Rev. E 71, 056214 (2005)

    Article  MathSciNet  Google Scholar 

  40. Cymbalyuk, G., Shilnikov, A.L.: Coexistence of tonic spiking oscillations in a leech neuron model. J. Comput. Neurosci. 18(3), 255–263 (2005)

    Article  MathSciNet  Google Scholar 

  41. Channell, P., Cymbalyuk, G., Shilnikov, A.L.: Applications of the Poincare mapping technique to analysis of neuronal dynamics. Neurocomputing 70, 10–12 (2007)

    Article  Google Scholar 

  42. Shilnikov, L.P., Shilnikov, A.L., Turaev, D., Chua, L.O.: Methods of Qualitative Theory in Nonlinear Dynamics, vol. 1. World Scientific, Singapore (1998)

    Book  MATH  Google Scholar 

  43. Shilnikov, L.P., Shilnikov, A.L., Turaev, D., Chua, L.O.: Methods of Qualitative Theory in Nonlinear Dynamics, vol. 2. World Scientific, Singapore (2001)

    Book  MATH  Google Scholar 

  44. Shilnikov, A.L., Shilnikov, L.P., Turaev, D.V.: Blue sky catastrophe in singularly perturbed systems. Mosc. Math. J. 5(1), 205–211 (2005)

    MathSciNet  Google Scholar 

  45. Chay, T.R.: Chaos in a three-variable model of an excitable cell. Physica D 16(2), 233–242 (1985)

    Article  MATH  Google Scholar 

  46. Shilnikov, A.L., Rulkov, N.F.: Origin of chaos in a two-dimensional map modelling spiking-bursting neural activity. Int. J. Bifurc. Chaos 13(11), 3325–3340 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  47. Medvedev, G.M.: Reduction of a model of an excitable cell to a one-dimensional map. Physica D 202(1–2), 87–106 (2005)

    Google Scholar 

  48. Griffiths, R.E., Pernarowski, M.C.: Return map characterizations for a model of bursting with two slow variables. SIAM J. Appl. Math. 66(6), 1917–1948 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  49. Channell, P., Fuwape, I., Neiman, A.B., Shilnikov, A.L.: Variability of bursting patterns in a neuron model in the presence of noise. J. Comput. Neurosci. 27(3), 527–542 (2009)

    Article  MathSciNet  Google Scholar 

  50. Channell, P., Cymbalyuk, G., Shilnikov, A.: Origin of bursting through homoclinic spike adding in a neuron model. Phys. Rev. Lett. 98(13), 134101 (2007)

    Article  Google Scholar 

  51. Wojcik, J., Shilnikov, A.L.: Voltage interval mappings for dynamics transitions in elliptic bursters. Physica D (2011, accepted)

  52. Shilnikov, A.L.: On bifurcations of the Lorenz attractor in the Shimizu–Morioka model. Physica D 62(1–4), 338–346 (1993)

    Article  MathSciNet  Google Scholar 

  53. Belykh, V.N., Belykh, I.V., Colding-Jorgensen, M., Mosekilde, E.: Homoclinic bifurcations leading to bursting oscillations in cell models. Eur. Phys. J. E, Soft Matter 3(3), 205–219 (2000)

    Article  Google Scholar 

  54. Shilnikov, A.L., Cymbalyuk, G.: Homoclinic saddle-node orbit bifurcations en route between tonic spiking and bursting in neuron models, invited review. Regul. Chaotic Dyn. 3(9), 281–297 (2004)

    Article  MathSciNet  Google Scholar 

  55. Doiron, B., Laing, C., Longtin, A., Maler, L.: Ghostbursting: A novel neuronal burst mechanism. J. Comput. Neurosci. 12(1), 5–25 (2002)

    Article  Google Scholar 

  56. Laing, C.R., Doiron, B., Longtin, A., Noonan, L., Turner, R.W., Maler, L.: Type I burst excitability. J. Comput. Neurosci. 14(3), 329–342 (2003)

    Article  Google Scholar 

  57. Rowat, P.F., Elson, R.C.: State-dependent effects of Na channel noise on neuronal burst generation. J. Comput. Neurosci. 16(2), 87–112 (2004)

    Article  Google Scholar 

  58. Shilnikov, A.L., Cymbalyuk, G.: Transition between tonic spiking and bursting in a neuron model via the blue-sky catastrophe. Phys. Rev. Lett. 94(4), 048101 (2005)

    Article  Google Scholar 

  59. Shilnikov, A.L., Kolomiets, M.L.: Methods of the qualitative theory for the Hindmarsh–Rose model: A case study. A tutorial. Int. J. Bifurc. Chaos 18(7), 1–32 (2008)

    MathSciNet  Google Scholar 

  60. Kramer, M.A., Traub, R.D., Kopell, N.J.: New dynamics in cerebellar Purkinje cells: Torus canards. Phys. Rev. Lett. 101(6), 068103 (2008)

    Article  Google Scholar 

  61. Gavrilov, N., Shilnikov, A.L.: Methods of Qualitative Theory of Differential Equations and Related Topics. AMS Transl. Series II (2000). Chapter Example of a blue sky catastrophe, pp. 99–105

    Google Scholar 

  62. Lukyanov, V., Shilnikov, L.P.: On some bifurcations of dynamical systems with homoclinic structures. Sov. Math. Dokl. 19(6), 1314–1318 (1978)

    Google Scholar 

  63. Gavrilov, N.K., Shilnikov, L.P.: On three-dimensional dynamical systems close to systems with a structurally unstable homoclinic curve. Math. USSR Sb. 17(3), 467–485 (1972)

    Article  Google Scholar 

  64. Cymbalyuk, G.S., Calabrese, R.L.: A model of slow plateau-like oscillations based upon the fast Na+ current in a window mode. Neurocomputing 38, 159–166 (2001)

    Article  Google Scholar 

  65. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500–544 (1952)

    Google Scholar 

  66. Sharkovsky, A.N., Kolyada, S.F., Sivak, A.G., Fedorenko, V.V.: Dynamics of One-Dimensional Maps. Mathematics and its Applications, vol. 407. Kluwer Academic, Dordrecht (1997)

    MATH  Google Scholar 

  67. Mira, C.: Chaotic Dynamics from the One-Dimensional Endomorphism to the Two-Dimensional Diffeomorphism. World Scientific, Singapore (1987)

    MATH  Google Scholar 

  68. Glendinning, P., Hall, T.: Zeros of the kneading invariant and topological entropy for Lorenz maps. Nonlinearity 9, 999–1014 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  69. Li, M.-C., Malkin, M.: Smooth symmetric and Lorenz models for unimodal maps. Int. J. Bifurc. Chaos 13(11), 3353–3371 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  70. Medvedev, G.M.: Transition to bursting via deterministic chaos. Phys. Rev. Lett. 97, 048102 (2006)

    Article  Google Scholar 

  71. Li, T.Y., Yorke, J.A.: Period three implies chaos. Am. Math. Mon. 82(10), 985–992 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  72. Shilnikov, L.P., Turaev, D.V.: Blue sky catastrophes. Dokl. Math. 51, 404–407 (1995)

    Google Scholar 

  73. Barrio, R., Shilnikov, A.L.: Bursting dynamics of isolated and networked neurons (2011, in preparation)

  74. Neiman, A., Shilnikov, A.L.: Spontaneous voltage oscillations and response dynamics of a Hodgkin–Huxley type model of sensory hair cells. Phys. Rev. E, Stat. Nonlinear Soft Matter Phys. (2011, submitted)

  75. Barrio, R., Shilnikov, A.L.: Parameter-sweeping techniques for temporal dynamics of neuronal systems: Hindmarsh–Rose model. J. Math. Neurosci. (2011, in review)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey Shilnikov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shilnikov, A. Complete dynamical analysis of a neuron model. Nonlinear Dyn 68, 305–328 (2012). https://doi.org/10.1007/s11071-011-0046-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-0046-y

Keywords

Navigation