Skip to main content
Log in

Morphometric comparisons between automated and manual karst depression inventories in Apalachicola National Forest, Florida, and Mammoth Cave National Park, Kentucky, USA

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Karst depression catalogs are critical to assessing the hydrology and geohazards of an area; yet, the delineation of these features within a landscape can be a difficult, time-consuming and subjective task. This study evaluates the efficacy of karst depression inventorying using an automated fill-difference method operating on high-resolution lidar-derived digital elevation models (DEMs). The resulting catalog is compared with existing karst depression inventories for two low-development areas of the USA, Mammoth Cave National Park (MACA) and Apalachicola National Forest (ANF), where karst depressions have been mapped previously using a manual closed-contour approach. The automated fill method captures 93 and 85 % of these previously mapped karst depressions at MACA and ANF, respectively. Field observations and topographic analysis suggest that the omitted features were likely misclassified within the existing catalogs. The automated routine returns 797 and 3377 additional topographic depressions, at MACA and ANF, respectively, which are not included in the existing catalogs. While the geology of ANF is mostly homogenous Quaternary deposits, the newly identified, typically smaller-scale depressions found within MACA tend to be disproportionally located in non-carbonate-dominated formations, where the development of karst may be restricted by geologic heterogeneity. Within both areas, the size distributions of the two inventories are statistically identical for features larger than ~103 m2 in area or ~3 m in depth. For individual depressions captured by both methods at MACA, the automated fill-difference routine tends to return a slightly larger estimate of depression size and aggregate small depressions into larger ones. Conversely, at ANF, some low-relief depressions may be disaggregated by the fill-difference technique, with a trend toward smaller estimated depression areas when the automated method is employed. The automated fill-difference method, operating on high-resolution lidar-derived DEMs, can reproduce and expand the existing inventories of karst depressions, while minimizing false detections that may be inherent within pre-existing catalogs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Arthur JD, Baker AE, Cichon JR, Wood AR, Rudin A (2005) Florida aquifer vulnerability assessment (FAVA): contamination potential of Florida’s principal aquifer systems. Florida Geological Survey. http://waterinstitute.ufl.edu/suwannee-hydroobserv/pdf/FAVA_REPORT_MASTER_DOC_3-21-05.pdf

  • Bauer C (2015) Analysis of dolines using multiple methods applied to airborne laser scanning data. Geomorphology 250:78–88. doi:10.1016/j.geomorph.2015.08.015

    Article  Google Scholar 

  • Bement LC (2010) Hunter-gatherer mortuary practices during the Central Texas Archaic. University of Texas Press, Austin

    Google Scholar 

  • Bohnenstiehl DR, Howell JK, White SM, Hey RN (2012) A modified basal outlining algorithm for identifying topographic highs in gridded elevation data, part 2: application to Springerville Volcanic Field. Comput Geosci 49:308–314. doi:10.1016/j.cageo.2012.04.023

    Article  Google Scholar 

  • Bolstad PV, Stowe T (1994) An evaluation of DEM accuracy: elevation, slope, and aspect. Photogramm Eng Remote Sens 60:1327–1332

    Google Scholar 

  • Carter J, Schmid K, Waters K, Betzhold L, Hadley B, Mataosky R, Halleran J (2012) Lidar 101: An introduction to lidar technology, data, and applications. National Oceanic and Atmospheric Administration (NOAA) Coastal Services Center, Charleston

    Google Scholar 

  • Chen Q (2007) Airborne lidar data processing and information extraction. Photogramm Eng Remote Sens 73:109

    Google Scholar 

  • Crutchley S, Crow P (2010) The Light Fantastic: using airborne lidar in archaeological survey. English Heritage, Swindon

    Google Scholar 

  • Day M (1976) The morphology and hydrology of some Jamacian karst depressions. Earth Surface Process 1:111–129

    Article  Google Scholar 

  • Dinger JS, Zourarakis DP, Currens JC (2007) Spectral enhancement and automated extraction of potential sinkhole features from NAIP imagery–initial investigations. J Environ Inf 10:22–29

    Article  Google Scholar 

  • Doctor DH, Young JA (2013) An evaluation of automated GIS tools for delineating karst sinkholes and closed depressions from 1-meter LiDAR-derived digital elevation data. In: Land L, Doctor DH, Stephenson JB (eds) Sinkholes and the engineering and environmental impacts of Karst: proceedings of the thirteenth multidisciplinary conference, May 6–10, Carlsbad, New Mexico. NCKRI symposium 2. National Cave and Karst Research Institute, Carlsbad, NM, pp 449–458

  • Doneus M, Briese C, Fera Janner M (2008) Archaeological prospection of forest areas using full-waveform airborne laser scanning. J Archaeol Sci 35:882–893. doi:10.1016/j.jas.2007.06.013

    Article  Google Scholar 

  • Engel AS, Stern LA, Bennett PC (2004) Microbial contributions to cave formation: new insights into sulfuric acid speleogenesis. Geology 32:369–372. doi:10.1130/G20288.1

    Article  Google Scholar 

  • Etienne D, Ruffaldi P, Dupouey JL, Georges-Leroy M, Ritz F, Dambrine E (2013) Searching for ancient forests: a 2000 year history of land use in northeastern French forests deduced from the pollen compositions of closed depressions. Holocene 23:678–691. doi:10.1177/0959683612470173

    Article  Google Scholar 

  • Florea LJ, Paylor RL, Simpson L, Gulley J (2002) Karst GIS advances in Kentucky. J Cave Karst Stud 64:58–62

    Google Scholar 

  • Florida State Senate (2011) Issues relating to sinkhole insurance. Interim Report 2011-104

  • Ford D, Williams PD (2013) Karst hydrogeology and geomorphology. Wiley, Chichester

    Google Scholar 

  • Galve JP, Gutiérrez F, Remondo J, Lucha P, Cendrero A (2009) Evaluating and comparing methods of sinkhole susceptibility mapping in the Ebro Valley evaporate karst (NE Spain). Geomorphology 111:160–172. doi:10.1016/j.geomorph.2009.04.017

    Article  Google Scholar 

  • Galve JP, Remondo J, Gutiérrez F (2011) Improving sinkhole hazard models incorporating magnitude–frequency relationships and nearest neighbor analysis. Geomorphology 134:157–170. doi:10.1016/j.geomorph.2011.05.020

    Article  Google Scholar 

  • Gao J (1995) Comparison of sampling schemes in constructing DTMs from topographic maps. ITC J 1:18–22

    Google Scholar 

  • Garbrecht J, Starks P (1995) Note on the use of USGS level 1 7.5-minute DEM coverages for landscape drainage analyses. Photogramm Eng Remote Sens 61:519–522

    Google Scholar 

  • Gong J, Li Z, Zhu Q, Sui H, Zhou Y (2000) Effects of various factors on the accuracy of DEMs: an intensive experimental investigation. Photogramm Eng Remote Sens 66:1113–1117

    Google Scholar 

  • Granger DE, Fabel D, Palmer AN (2001) Pliocene-Pleistocene incision of the Green River, Kentucky, determined from radioactive decay of cosmogenic 26Al and 10Be in Mammoth Cave sediments. Geol Soc Am Bull 113:825–836

    Article  Google Scholar 

  • Green RT, Painter SL, Sun A, Worthington SR (2006) Groundwater contamination in karst terranes. Water Air Soil Pollut Focus 6:157–170. doi:10.1007/s11267-005-9004-3

    Article  Google Scholar 

  • Gupta A (2011) Tropical geomorphology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Gutiérrez F, Guerrero J, Lucha P (2008) A genetic classification of sinkholes illustrated from evaporate paleokarst exposures in Spain. Environ Geol 53:993–1006. doi:10.1007/s00254-007-0727-5

    Article  Google Scholar 

  • Han G, Liu CQ (2004) Water geochemistry controlled by carbonate dissolution: a study of the river waters draining karst-dominated terrain, Guizhou Province, China. Chem Geol 204:1–21. doi:10.1016/j.chemgeo.2003.09.009

    Article  Google Scholar 

  • Hérault B, Thoen D (2008) Diversity of plant assemblages in isolated depressional wetlands from Central-Western Europe. Biodivers Conversat 17:2169–2183. doi:10.1007/s10531-007-9227-x

    Article  Google Scholar 

  • Hodgson ME, Jensen JR, Schmidt L, Schill S, Davis B (2003) An evalution of LIDAR-and IFSAR-derived digital elevation models in leaf-on conditions with USGS Level 1 and Level 2 DEMs. Remote Sens Environ 84:295–308. doi:10.1016/S0034-4257(02)00114-1

    Article  Google Scholar 

  • Homer CG, Dewitz JA, Yang L, Jin S, Danielson P, Xian G, Coulson J, Herold ND, Wickham JD, Megown K (2015) Completion of the 2011 national land cover database for the conterminous united states-representing a decade of land cover change information. Photogramm Eng Remote Sens 81:345–354

    Google Scholar 

  • Jenson SK, Domingue JO (1988) Extracting topographic structure from digital elevation data for geographic information system analysis. Photogramm Eng Remote Sens 54:1593–1600

    Google Scholar 

  • Kerr-Upal M, Stone M, Seters TV, Whitehead G, Price J (1999) Assessing the risk of groundwater nitrate contamination in the Region of Waterloo, Ontario, Canadian. Water Resour J 24:225–233. doi:10.4296/cwrj2403225

    Google Scholar 

  • Kobal M, Bertoncelj I, Pirotti F, Dakskobler I, Kutnar L (2015) Using lidar data to analyse sinkhole characteristics relevant for understory vegetation under forest cover–case study of a high karst area in the Dinaric Mountains. PLoS ONE. doi:10.1371/journal.pone.1022070

    Google Scholar 

  • Lindsay JB, Creed IF (2006) Distinguishing actual and artefact depression in digital elevation data. Comput Geosci 32:1192–1204. doi:10.1016/j.cageo.2005.11.002

    Article  Google Scholar 

  • Mayer JH (2002) Evaluating natural site formation processes in eolian dune sands: a case study from the Krmpotich Folsom site, Killpecker Dunes, Wyoming. J Archaeol Sci 29:1199–1211. doi:10.1006/jasc.2001.0803

    Article  Google Scholar 

  • NWFWMD (2015) NWFWMD public LiDAR data server. http://www.nwfwmdlidar.com/. Accessed 1 Aug 2013

  • Olsen SJ (1958) Wakulla cave. Natural History 67:386–404

    Google Scholar 

  • Palmer AN (1981) A geological guide to mammoth cave national park. Zephyrus Press, Teaneck

    Google Scholar 

  • Paylor RL, Florea LJ, Caudill MJ, Currens JC (2003) A GIS coverage of Sinkholes in the Karst Areas of Kentucky: Kentucky Geological Survey, metadata file and shapefiles of highest elevation closed contours, 1 CDROM. A single CDROM. Kentucky Geological Survey

  • Puri HS, Vernon RO (1964) Summary of the geology of Florida and a guidebook to the classic exposures. Special publication no. 5. Florida Geological Survey. Tallahassee

  • Rahimi M, Alexander EC Jr (2013) Locating sinkholes in LiDAR coverage of a glacio-fluvial karst, Winona County, MN. In: Land L, Doctor DH, Stephenson JB (eds) Sinkholes and the engineering and environmental impacts of karst: proceedings of the thirteenth multidisciplinary conference, May 6–10, Carlsbad, New Mexico. NCKRI symposium 2. National Cave and Karst Research Institute, Carlsbad, pp 469–480

  • Sanderson M, Karrow PF, Greenhouse JP, Paloschi GVR, Schneider G, Mulamoottil G, Mason C, McBean EA, Fitzpatrick PN, Mitchell B, Shrubsole D (1995) Groundwater contamination in the Kitchener–Waterloo area, Ontario. Can Water Resour J 20:145–160. doi:10.4296/cwrj2003145

    Article  Google Scholar 

  • Scott TM (2001) Text to accompany the geological map of Florida. Florida Geological Survey. Tallahassee, Florida

    Google Scholar 

  • Seale LD, Florea LJ, Vacher HL, Brinkmann R (2008) Using ALSM to map sinkholes in the urbanized covered karst of Pinellas County, Florida–1, methodological considerations. Environ Geol 54:995–1005. doi:10.1007/s00254-007-0890-8

    Article  Google Scholar 

  • Shunk AJ, Driese SG, Clarke GM (2006) Latest Miocene to earliest Pliocene sedimentation and climate record derived from paleosinkhole fill deposits, Gray Fossil Site, northerneastern Tennessee, USA. Paleogeopgr Palaeoclimatol Palaeoecol 231:265–278. doi:10.1016/j.palaeo.2005.08.001

    Article  Google Scholar 

  • Slatton KC, Carter WE, Shrestha RL, Dietrich W (2007) Airborne laser swath mapping: achieving the resolution and accuracy required for geosurficial research. Geophys Res Lett. doi:10.1029/2007GL031939

    Google Scholar 

  • Stotler RL, Frape SK, El Mugammar HT, Johnston C, Judd-Henrey I, Harvey FE, Drimmie R, Jones JP (2011) Geochemical heterogeneity in a small, stratigraphically complex moraine aquifer system (Ontario, Canada): interpretation of flow and recharge using multiple geochmical parameters. Hydrogeol J 19:101–115. doi:10.1007/s10040-010-0628-7

    Article  Google Scholar 

  • Tharp TM (1999) Mechanics of upward propogation of cover-collapse sinkholes. Eng Geol 52:23–33. doi:10.1016/S0013-7952(98)00051-9

    Article  Google Scholar 

  • Thornberry-Ehrlich T (2011) Mammoth Cave National Park: geologic resources inventory report. Natural Resource Report NPS/NRSS/GRD/NRR–2011/448. National Park Service, Fort Collins, Colorado

  • Upchurch SB (2007) An introduction to the Cody Escarptment, North-Central Florida. Prepared for the Suwannee River Water Management District by Sam B. Upchurch, SDII Global Corporation

  • Veni G, DuChene HR, Crawford NC, Groves CG, Huppert GN, Kastning EH, Olson R, Wheeler BJ (2001) Living with Karst: a fragile foundation. AGI environmental awareness series, no. 4. American Geological Institute, Alexandria, Virginia

  • Wall J, Doctor DH, Terziotti S (2015) A semi-automated tool for reducing the creation of false closed depression from a filled lidar-derived digital elevation model. In: Doctor DH, Land L, Stephenson JB (eds) Sinkholes and the engineering and environmental impacts of karst: proceedings of the fourteenth multidisciplinary conference, October 5–9, Rochester, Minnesota. NCKRI symposium 5. National Cave and Karst Research Institute, Carlsbad, NM, pp 255–262

  • Weary DJ, Doctor DH (2014) Karst in the United State: a digital map compliation and database. US Department of the Interior. US Geological Survey Open-File Report 2014-1156. http://dx.doi.org/10.3133/ofr20141156

  • White WB, Watson RA, Pohl ER, Brucker R (1970) The central Kentucky karst. Geogr Rev 60:88–115

    Article  Google Scholar 

  • Zandbergen PA (2010) Accuracy considerations in the analysis of depressions in medium-resolution LiDAR DEMs. GISci Remote Sens 47:187–207

    Article  Google Scholar 

  • Zhu J, Taylor TP, Currens JC, Crawford MM (2014) Improved karst sinkhole mapping in Kentucky using LIDAR techniques: a pilot study in Floyds Fork Watershed. J Cave Karst Stud 76:207–216

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Speleological Society, the Cave Research Foundation, Environmental and Engineering Geology Division of the Geological Society of America, and the Southeastern Section of the Geological Society of America for funding this research. The authors would also like to thank the Hamilton Valley research station and Mammoth Cave National Park staff along with the Joint Fire Science Program and Northwestern Florida Water Management District for making their lidar data publicly available.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Wall.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wall, J., Bohnenstiehl, D.R., Wegmann, K.W. et al. Morphometric comparisons between automated and manual karst depression inventories in Apalachicola National Forest, Florida, and Mammoth Cave National Park, Kentucky, USA. Nat Hazards 85, 729–749 (2017). https://doi.org/10.1007/s11069-016-2600-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-016-2600-x

Keywords

Navigation