Skip to main content

Advertisement

Log in

New prospects for the spatialisation of technological risks by combining hazard and the vulnerability of assets

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Risk is currently considered as a function of hazard and the exposure of assets, depending on their vulnerability, on an area within which a disaster could occur. However, in France, technological risk management is shared between a technician management focused on hazard, where assets are identified only from direct exposure, and vulnerability assessment of the assets, which are rarely incorporated in their entirety. Early studies, which tried to take into account these two parts of management, are limited, as a result of incomplete identification of assets and their vulnerabilities. An absence or an inadequate combination between hazard and the vulnerability of assets is also frequently observed. Indeed, they are mainly based on the combination of territorial vulnerability through quantification of the hazard, which is not unproblematic: the characterisation of the hazard, translated into quality criteria in terms of technological hazards, is not a linear relation. To solve these problems, a geographical information system-based methodology is therefore suggested in this study, where hazard perimeters are combined with the vulnerabilities of the exposed assets in a qualitative way. It is based on a process that uses geospatial operations and a specific semiology to provide an efficient mapping of the global risk. This methodology could be applied to any kind of territory, hazard and assets, to produce operational and useful knowledge of technological risk cartography. It can also be considered as a first step to a more global Natech risk assessment, since floods may cause severe damages to the local industrial facilities and trigger major accidents involving human, material and environmental assets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Antonioni G, Landucci G, Necci A, Gheorgiu D, Cozzani V (2015) Quantitative assessment of risk due to NaTech scenarios caused by floods. Reliab Eng Syst Saf. doi:10.1016/j.ress.2015.05.020

    Google Scholar 

  • Armenakis C, Nirupama N (2013) Prioritization of disaster risk in a community using GIS. Nat Hazards 66:15–29. doi:10.1007/s11069-012-0167-8

    Article  Google Scholar 

  • Bubbico R, Di Cave S, Mazzarotta B (2004) Risk analysis for road and rail transport of hazardous materials: a GIS approach. J Loss Prev Process Ind 17:483–488. doi:10.1016/j.jlp.2004.08.011

    Article  Google Scholar 

  • Bubbico R, Di Cave S, Mazzarotta B, Silvetti B (2009) Preliminary study on the transport of hazardous materials through tunnels. Accid Anal Prev 41:1199–1205. doi:10.1016/j.aap.2008.05.011

    Article  Google Scholar 

  • Caradot N, Granger D, Chapgier J, Cherqui F, Chocat B (2011) Urban flood risk assessment using sewer flooding databases. Water Sci Technol 64:832–840. doi:10.1007/s11069-012-0167-8

    Article  Google Scholar 

  • D’Ercole R, Metzger P (2009) La vulnérabilité territoriale: une nouvelle approche des risques en milieu urbain. Cybergeo Eur J Geogr. doi:10.4000/cybergeo.22022

    Google Scholar 

  • El Hajj C, Piatyszek E, Tardy A, Laforest V (2015) Development of generic bow-tie diagrams of accidental scenarios triggered by flooding of industrial facilities (Natech). J Loss Prev Process Ind 36:72–83. doi:10.1016/j.jlp.2015.05.003

    Article  Google Scholar 

  • Fedeski M, Gwilliam J (2007) Urban sustainability in the presence of flood and geological hazards: the development of a GIS-based vulnerability and risk assessment methodology. Landsc Urban Plan 83:50–61. doi:10.1016/j.landurbplan.2007.05.012

    Article  Google Scholar 

  • Fuchs S, Birkmann J, Glade T (2012) Vulnerability assessment in natural hazard and risk analysis: current approaches and future challenges. Nat Hazards 64:1969–1975. doi:10.1007/s11069-012-0352-9

    Article  Google Scholar 

  • Garbolino E, Lachtar D, Sacile R, Bersani C (2013) Vulnerability and resilience of the territory concerning risk of dangerous goods transportation (DGT): proposal of a spatial model. Chem Eng Trans 32:91–96. doi:10.3303/CET1332016

    Google Scholar 

  • Girgin S, Krausmann E (2013) RAPID-N: rapid Natech risk assessment and mapping framework. J Loss Prev Process Ind 26:949–960. doi:10.1016/j.jlp.2013.10.004

    Article  Google Scholar 

  • Godoy SM, Santa Cruz ASM, Scenna NJ (2007) STRRAP system—a software for hazardous materials risk assessment and safe distances calculation. Reliab Eng Syst Saf 92:847–857. doi:10.1016/j.ress.2006.02.012

    Article  Google Scholar 

  • Granger D (2009) Méthodologie d’aide à la gestion durable des eaux urbaines. Dissertation, INSA de Lyon

  • Griot C (2007) Des territoires vulnérables face à un risque majeur: le transport de matières dangereuses. Géocarrefour 82:51–63. doi:10.4000/geocarrefour.1459

    Article  Google Scholar 

  • Ineris (2003) Élaboration d’un modèle d’évaluation quantitative des risques pour le transport multimodal des marchandises dangereuses

  • Ineris (2004) ARAMIS Développement d’une méthode intégrée d’analyse des risques pour la prévention des accidents majeurs

  • Kappes MS, Papathoma-Köhle M, Keiler M (2012) Assessing physical vulnerability for multi-hazards using an indicator-based methodology. Appl Geogr 32:577–590. doi:10.1016/j.apgeog.2011.07.002

    Article  Google Scholar 

  • Kaźmierczak A, Cavan G (2011) Surface water flooding risk to urban communities: analysis of vulnerability, hazard and exposure. Landsc Urban Plan 103:185–197. doi:10.1016/j.landurbplan.2011.07.008

    Article  Google Scholar 

  • Kienberger S, Lang S, Zeil P (2009) Spatial vulnerability units—expert-based spatial modelling of socio-economic vulnerability in the Salzach catchment, Austria. Nat Hazards Earth Syst Sci 9:767–778. doi:10.5194/nhess-9-767-2009

    Article  Google Scholar 

  • Koks EE, Jongman B, Husby TG, Botzen WJW (2015) Combining hazard, exposure and social vulnerability to provide lessons for flood risk management. Environ Sci Policy 47:42–52. doi:10.1016/j.envsci.2014.10.013

    Article  Google Scholar 

  • Liu X, Saat MR, Barkan CPL (2014) Probability analysis of multiple-tank-car release incidents in railway hazardous materials transportation. J Hazard Mater 276:442–451. doi:10.1016/j.jhazmat.2014.05.029

    Article  Google Scholar 

  • Lozano A, Muñoz A, Macias L, Antun JB (2011) Hazardous materials transportation in Mexico City: chlorine and gasolines cases. Transp Res Part C Emerg Technol 5:779–789. doi:10.1016/j.trc.2010.09.001

    Article  Google Scholar 

  • Lummen NS, Yamada F (2014) Implementation of an integrated vulnerability and risk assessment model. Nat Hazards 73:1085–1117. doi:10.1007/s11069-014-1123-6

    Article  Google Scholar 

  • Marzo E, Busini V, Rota R (2015) Definition of a short-cut methodology for assessing the vulnerability of a territory in natural–technological risk estimation. Reliab Eng Syst Saf. doi:10.1016/j.ress.2014.07.026

    Google Scholar 

  • Ministère de l’Écologie, du Développement et de l’Aménagement Durables-MEDAD (2008) Le plan de prévention des risques technologiques (PPRT)

  • Ministère de l’Écologie et du Développement Durable-MEDD (2002) Le transport de matières dangereuses

  • Necci A, Argenti F, Landucci G, Cozzani V (2014) Accident scenarios triggered by lightning strike on atmospheric storage tanks. Reliab Eng Syst Saf 127:30–46. doi:10.1016/j.ress.2014.02.005

    Article  Google Scholar 

  • Picou JS (2009) Katrina as Natech disaster: toxic contamination and long term risks for residents of New Orleans. J Appl Soc Sci 3:39–55. doi:10.1177/193672440900300204

    Google Scholar 

  • Propeck-Zimmermann E, Saint-Gérand T, Bonnet E (2007) Probabilités, risques et gestion territoriale: champs d’action des PPRT. Géocarrefour 82:65–76. doi:10.4000/geocarrefour.1473

    Article  Google Scholar 

  • Rebotier J (2007) Quel rôle pour les institutions dans la résilience? Une interprétation à travers le cas de Caracas. «Construire la résilience des territoires» (IRD-UCV), Valparaiso

  • Reghezza-Zitt M (2009) Réflexions autour de la vulnérabilité. Définition d’une approche intégrée à partir du cas de la métropole francilienne. In: Becerra S, Peltier A (eds) Risques et environnement: recherches interdisciplinaires sur la vulnérabilité des sociétés. L’Harmattan, Paris, pp 417–428

    Google Scholar 

  • Renard F (2010) Le risque pluvial en milieu urbain. De la caractérisation de l’aléa à l’évaluation de la vulnérabilité: le cas du Grand Lyon. Dissertation, Université Jean Moulin Lyon 3

  • Renard F, Chapon PM (2010) Une méthode d’évaluation de la vulnérabilité urbaine appliquée à l’agglomération lyonnaise. L’Espace géographique 39:35–50

    Google Scholar 

  • Reniers GLL, Dullaert W (2013) A method to assess multi-modal Hazmat transport security vulnerabilities: Hazmat transport SVA. Transp Policy 28:103–113. doi:10.1016/j.tranpol.2012.05.002

    Article  Google Scholar 

  • Rufat S (2007) L’estimation de la vulnérabilité urbaine, un outil pour la gestion du risque. Géocarrefour 82:7–16. doi:10.4000/geocarrefour.1397

    Article  Google Scholar 

  • Saat MR, Werth CJ, Schaeffer D, Yoon H, Barkan CPL (2014) Environmental risk analysis of hazardous material rail transportation. J Hazard Mater 264:560–569. doi:10.1016/j.jhazmat.2013.10.051

    Article  Google Scholar 

  • Saaty TL (1980) The analytic hierarchy process: planning, priority, setting, resource allocation. Mc Graw-Hill, New-York

    Google Scholar 

  • Sengul H, Santella N, Steinberg LJ, Cruz AM (2012) Analysis of hazardous material releases due to natural hazards in the United States. Disasters 36:723–743. doi:10.1111/j.1467-7717.2012.01272

    Article  Google Scholar 

  • Shi W, Zeng W (2013) Genetic k-means clustering approach for mapping human vulnerability to chemical hazards in the industrialized city: a case study of Shanghai, China. Int J Environ Res Public Health 10:2578–2595. doi:10.3390/ijerph10062578

    Article  Google Scholar 

  • Soto D, Renard F, Magnon A (2014) Evaluating environmental risk to technological hazards, using GIS spatial decision making: application to the Greater Lyon (France). Lect Notes Comput Sci 8581:15–25. doi:10.1007/978-3-319-09150-1_2

    Article  Google Scholar 

  • Tomasoni AM, Garbolino E, Rovatti M, Sacile R (2010) Risk evaluation of real-time accident scenarios in the transport of hazardous material on road. Manag Environ Qual 21:695–711. doi:10.1108/14777831011067962

    Article  Google Scholar 

  • Topuz E, Talinli I, Aydin E (2011) Integration of environmental and human health risk assessment for industries using hazardous materials: a quantitative multi criteria approach for environmental decision makers. Environ Int 37:393–403. doi:10.1016/j.envint.2010.10.013

    Article  Google Scholar 

  • Van Raemdonck K, Macharis C, Mairesse O (2013) Risk analysis system for the transport of hazardous materials. J Saf Res 45:55–63. doi:10.1016/j.jsr.2013.01.002

    Article  Google Scholar 

  • Veyret Y, Reghezza M (2006) Vulnérabilité et risques. L’approche récente de la vulnérabilité. Ann Min 43:9–13

    Google Scholar 

  • Yang J, Li F, Zhou J, Zhang L, Huang L, Bi J (2010) A survey on hazardous materials accidents during road transport in China from 2000 to 2008. J Hazard Mater 184:647–653. doi:10.1016/j.jhazmat.2010.08.085

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didier Soto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soto, D., Renard, F. New prospects for the spatialisation of technological risks by combining hazard and the vulnerability of assets. Nat Hazards 79, 1531–1548 (2015). https://doi.org/10.1007/s11069-015-1912-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-015-1912-6

Keywords

Navigation