Skip to main content

Advertisement

Log in

GIS-based morpho-tectonic studies of Alaknanda river basin: a precursor for hazard zonation

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Alaknanda river basin is considered to be tectonically active where damaging earthquakes and landslides have occurred. The whole basin was divided into 8 sub-basins to carry out morphometric analyses, hypsometric integral (HI) analysis and valley floor width to valley height ratio (V f) factor. The sub-basins 2 and 3 show that they are highly active, because of the higher values of bifurcation ratio, stream frequency asymmetric factor, and lower values of form factor, elongation ratio and circulatory ratio. In these areas, HI values are very low indicating that the landscape is highly eroded, deeply dissected and tectonically active. The result obtained from V f was similar which classified both these basins as highly active. Morphometric analysis, HI and V f analyses along with structural map of study area are used to prepare morpho-tectonic map classifying the whole area into very high, high, moderate and low zones of tectonic activity. This map clearly indicates that the areas near MCT II (Munsiari Thrust), MCT III (Ramgarh Thrust) and North Almora Thrust are tectonically very active which fall in sub-basins 2, 3, 4 and parts of 5. Various locations such as Chamoli, Birahi, Pipalkoti, Rudraprayag, etc. are situated in these zones where many earthquakes and landslides occur every year. Moreover, the data plotted for earthquakes and landslides occurrences are consistent with morpho-tectonic map and can be used as a precursor for demarcation of natural hazard vulnerable zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmad T, Mukherjee PK, Trivedi JR (1999) Geochemistry of Precambrian mafic magmatic rocks of the western Himalaya, India: petrogenetic and tectonic implications. Chem Geol 160:103–119

    Article  Google Scholar 

  • Ahmed SA, Chandrashekarappa KN, Raj SK et al (2010) Evaluation of morphometric parameters derived from ASTER and SRTM DEM—a study on Bandihole sub-watershed Basin in Karnataka. J Indian Soc Remote Sens 38:227–238

    Article  Google Scholar 

  • Bali R, Agarwal KK, Ali SN et al (2012) Drainage morphometry of Himalayan Glacio-fluvial basin, India: hydrologic and neotectonic implication. Environ Earth Sci 66(4):1163–1174

    Google Scholar 

  • Barnard PL, Owen LA, Sharma MC et al (2001) Natural and human-induced landsliding in the Garhwal Himalaya of northern India. Geomorphology 40:21–35

    Article  Google Scholar 

  • Barnard PL, Owen LA, Sharma MC et al (2004) Late quaternary landscape evolution of a monsoon-influenced high Himalayan valley, Gori Ganga, Nanda Devi, NE Garhwal. Geomorphology 61:91–110

    Article  Google Scholar 

  • Bhattacharya AR (2008) Basement rocks of the Kumaun–Garhwal Himalaya: implications for Himalayan tectonics. J Earth Sci India I(I):1–10

    Google Scholar 

  • Bookhagen B, Thiede RC, Strecker MR (2005) Abnormal monsoon years and their control on erosion and sediment flux in the high, arid northwestern Himalaya. Earth Plane Sci Lett 231:131–146

    Article  Google Scholar 

  • Bull WB, Fadden MC (1977) Tectonic geomorphology and south of the Garlock Fault, California. Geomorphology 1:15–32

    Article  Google Scholar 

  • Catlos EJ, Harrison TM, Kohn MJ et al (2001) Geochronologic and thermobarometric constraints on the evolution of the Main Central Thrust, central Nepal Himalaya. J Geophys Res 106:16177–16204

    Article  Google Scholar 

  • Catlos EJ, Dubey CS, Marston RA et al (2007) Geochronologic constraints across the Main Central Thrust shear zone, Bhagirathi River (NW India): implications for Himalayan tectonics. In: Cloos M, Carlson WD, Gilbert MC, Liou JG, Sorensen SS (eds) Convergent margin terranes and associated regions: a tribute to W. G. Ernst. Geol Soc Am Bull Special Paper 419:135–151

  • Célérier J, Harrison MT, Webb AAG et al (2009) The Kumaun and Garwhal Lesser Himalaya, India: part 1. Structure and stratigraphy. Geol Soc Am Bull 121:1262–1280

    Article  Google Scholar 

  • Celles De, Robinson PG, Quade JDM (2001) Stratigraphy, structure, and tectonic evolution of the Himalayan fold-thrust belt in western Nepal. Tectonics 20:487–509. doi:10.1029/2000TC001226

    Article  Google Scholar 

  • Chopra S, Kumar V, Suthar A et al (2012) Modeling of strong ground motions for 1991 Uttarkashi, 1999 Chamoli earthquakes, and a hypothetical great earthquake in Garhwal–Kumaun Himalaya. Nat Hazards. doi:10.1007/s11069-012-0289-z

    Google Scholar 

  • Cotton F, Campillo M, Deschamps A, Rastogi BK (1996) Rupture history and seismotectonics of the 1991 Uttarkashi, Himalaya earthquake. Tectonophysics 258:35–51

    Article  Google Scholar 

  • Dubey CS, Shukla DP, Ningreichon AS, Usham AL (2013) Orographic control of the Kedarnath disaster. Current Science 105: 3p (accepted)

  • Cox RT (1994) Analysis of drainage-basin symmetry as a rapid technique to identify areas of possible quaternary tilt-block tectonics: an example from the Mississippi Embayment. Geol Soc Am Bull 106:571–581

    Article  Google Scholar 

  • Gangalakunta POR, Amal KM, Kothiram SG (2004) Drainage morphometry and its influence on landform characteristics in a basaltic terrain, Central India—a remote sensing and GIS approach. Int J Appl Earth Obs Geoinfor 6:1–16

    Article  Google Scholar 

  • Hadley RF, Schumm SA (1961) Sediment sources and drainage basin characteristics in upper Cheyenne River Basin. US Geol Surv Water-Supply 1531-B:198

    Google Scholar 

  • Hare PW, Gardner TW (1985) Geomorphic indicators of vertical neotectonism along converging plate margins, Nicoya Peninsula, Costa Rica. In: Morisawa M, Hack JT (eds) Tectonic geomorphology. Proceedings of the 15th Annual Binghamton Geomorphology Symposium. Allen, Unwin London, pp 75–104

  • Harrison TM, Ryerson FJ, Le Fort P et al (1997) A late Miocene–Pliocene origin for the central Himalayan inverted metamorphism. Earth Planet Sci Lett 146:E1–E7. doi:10.1016/S0012-821X(96)00215-4

    Article  Google Scholar 

  • Heim A, Gansser A (1939) Central Himalaya Geological Observations of Swiss Expedition. Mem Soc Helv Sci Nat 73:1–245

    Google Scholar 

  • Hodges KV, Silverberg DS (1988) Thermal evolution of the Greater Himalaya, Garhwal, India. Tectonophysics 7:583–600

    Google Scholar 

  • Hodges KV, Wobus C, Ruhl K et al (2004) Quaternary deformation, river steepening, and heavy precipitation at the front of the Higher Himalayan ranges. Earth Planet Sci Lett 220(3–4):379–389

    Article  Google Scholar 

  • Horton RE (1945) Erosional development of streams and their drainage basins: hydrophysical approach to quantitative morphology. Geol Soc Am Bull 56:275–370

    Google Scholar 

  • International Seismological Centre (2010) On-line bulletin. http://www.isc.ac.uk, Int Seismol Cent, Thatcham, United Kingdom, 2010

  • Kanungo DP, Arora MK, Sarkar S et al (2006) A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas. Eng Geol 85:347–366

    Article  Google Scholar 

  • Keller EA, Pinter N (1996) Active tectonic earth quake—uplift and landscape. Prentice Hall Inc., Upper Saddle River, p 337

    Google Scholar 

  • Keller EA, Pinter N (2002) Active tectonics: earthquakes and landscape, 2nd edn. Prentice-Hall, Upper Saddle River

    Google Scholar 

  • Malik JN, Mohanty C (2007) Active tectonic influence on the evolution of drainage and landscape: geomorphic signatures from frontal and hinterland areas along north western Himalaya, India. J Asian Earth Sci 29:604–618

    Article  Google Scholar 

  • Manu MS, Anirudhan S (2008) Drainage characteristics of Achankovil river basin, Kerala. J Geol Soc India 71:841–850

    Google Scholar 

  • Mesa LM (2006) Morphometric analysis of a subtropical Andean basin (Tucuman, Argentina). Environ Geol 50:1235–1242

    Article  Google Scholar 

  • Metcalfe RP (1993) Pressure, temperature and time constraints on metamorphism across the Main Central Thrust Zone and High Himalayan slab in the Garhwal Himalaya, Himalayan tectonics. Geol Soc India Spec Pub 74:485–510

    Article  Google Scholar 

  • Miller VC (1953) A quantitative geomorphic study of drainage basin characteristics in the Clinch mountain area, Virginia and Tennessee. Technical report 3. Columbia University, New York: Office of Naval Research, Department of Geology

  • Mohanty WK, Walling MY, Nath SK et al (2007) First order seismic microzonation of Delhi, India using Geographic Information System (GIS). Nat Hazards 40:245–260. doi:10.1007/s11069-006-0011-0

    Article  Google Scholar 

  • Mukhopadhyay S, Bormann P (2004) Low cost seismic microzonation using microtremor data: an example from Delhi, India. J Asian Earth Sci 24:271–280

    Article  Google Scholar 

  • Nath SK, Shukla K, Vyas M (2008) Seismic hazard scenario and attenuation model of the Garhwal Himalaya using near field synthesis from weak motion seismometry. J Earth Syst Sci 117:649–670

    Article  Google Scholar 

  • Oldham RD (1883) Note on the geology of Jaunsar and the lower Himalayas. Mem Geol Surv India 3:193–198

    Google Scholar 

  • Owen LA, Sharma MC (1998) Rates of paraglacial fan formation in the Garhwal Himalaya: implications for landscape evolution. Geomorphology 26:171–184

    Article  Google Scholar 

  • Ozdemir H, Bird D (2009) Evaluation of morphometric parameters of drainage networks derived from topographic maps and DEM in point of floods. Environ Geol 56(7):1405–1415

    Article  Google Scholar 

  • Pandey AC, Dubey CS (2002) Terrain mapping and evaluation in Himalayas using remote sensing and GIS techniques—a case study from Tehri Dam and its environs. IAPRS & SIS 34(7):105–108

    Google Scholar 

  • Pandey AC, Saklani PS, Dubey CS (2005) Geological and morphotectonic studies using satellite images techniques of Tehri, Uttarkashi, a part of Garhwal Himalayas. In Himalaya. Geological aspects 3:153–171 (Saklani PS edn Delhi, Satish Serial Publication, 2005, p 341, ISBN 81-89304-04-6)

  • Patel RC, Carter A (2009) Exhumation history of the Higher Himalayan Crystalline along Dhauliganga–Goriganga River valleys, NW India: New constraints from fission-track analysis. Tectonics 28: TC3004. doi:10.1029/2008TC002373

  • Paul SK, Bartarya SK, Rautela P et al (2000) Catastrophic mass movement of 1998 monsoons at Malpa in Kali Valley, Kumaun Himalaya (India). Geomorphology 25:169–180

    Article  Google Scholar 

  • Pérez-Peña JV, Azor A, Azañón JM et al (2010) Active tectonics in the Sierra Nevada (Betic Cordillera, SE Spain): insights from geomorphic indexes and drainage pattern analysis. Geomorphology 119:74–87

    Article  Google Scholar 

  • Ray Y, Srivastava P (2010) Widespread aggradation in the mountainous catchment of the Alaknanda–Ganga River System: timescales and implications to Hinterland–foreland relationships. Quat Sci Rev 29:2238–2260

    Article  Google Scholar 

  • Richards A, Argles T, Harris N et al (2005) Himalayan architecture constrained by isotopic tracers from clastic sediments. Earth Plan Sci Lett 236:773–796. doi:10.1016/j.epsl.2005.05.034

    Article  Google Scholar 

  • Roy PNS, Mondal SK, Joshi M (2012) Himalaya is among the most earthquake prone areas of the world. The main seismogenic zones are associated with the collision plate boundary between the Indian and Eurasian plates. Nat Hazards. doi:10.1007/s11069-012-0235-0

    Google Scholar 

  • Sarkar S, Anbalagan R (2008) Landslide hazard zonation mapping and comparative analysis of hazard zonation maps. J Mt Sci 5:232–240

    Article  Google Scholar 

  • Sarkar S, Kanungo DP (2004) An integrated approach for landslide susceptibility mapping using remote sensing and GIS. Photogramm Eng Remote Sens 70(5):617–625

    Article  Google Scholar 

  • Sarkar S, Kanungo DP, Patra AK et al (2008) GIS based spatial data analysis for landslide susceptibility mapping. J Mt Sci 5(1):52–62

    Article  Google Scholar 

  • Schumm SA (1956) Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geol Soc Am Bull 67:597–646

    Article  Google Scholar 

  • Singh P, Patel RC, Lal N (2012) Plio-Plistocene in-sequence thrust propagation along the Main Central Thrust zone (Kumaon–Garhwal Himalaya, India): new thermochronological data. Tectonophysics. doi:10.1016/j.tecto.2012.08.015

    Google Scholar 

  • Smith KG (1950) Standards for grading texture of erosional topography. Am J Sci 248:655–668

    Article  Google Scholar 

  • Sreedevi PD, Owais S, Khan HH et al (2009) Morphometric analysis of a watershed of South India using SRTM data and GIS. J Geol Soc India 73:543–552

    Article  Google Scholar 

  • Srivastava RN, Ahmad A (1979) Geology and structure of Alaknanda valley, Garhwal Himalaya. Himal Geol 9(1):225–254

    Google Scholar 

  • Srivastava P, Mitra G (1994) Thrust geometries and deep structure of the outer and lesser Himalaya, Kumaon and Garhwal (India): implications for evolution of the Himalayan fold-and-thrust belt. Tectonophysics 13:89–109

    Google Scholar 

  • Strahler AN (1964) Quantitative geomorphology of the drainage basin and channel networks. In: Chow VT (ed) Handbook of applied hydrology. McGraw-Hill Book Co., New York, pp 4–74

  • Thiede RC, Bookhagen B, Arrowsmith J et al (2004) Climatic control on rapid exhumation along the southern Himalayan front. Earth Planet Sci Lett 222(3–4):791–806

    Article  Google Scholar 

  • Thiede RC, Ehlers TA, Bookhagen B et al (2009) Erosional variability along the northwest Himalaya. J Geophys Res 114:F01015. doi:10.1029/2008JF001010

    Google Scholar 

  • Thomas J, Joseph S, Thrivikramaji KP et al (2012) Morphometric aspects of a small tropical mountain river system, the southern Western Ghats, India. Environ Earth Sci 66:2353–2366

    Article  Google Scholar 

  • Tsodulos IM, Koukouvelas IK, Pavlides S (2008) Tectonic geomorphology of the easternmost extension of the Gulf of Corinth (Beotia, Central Greece). Tectonophysics 453:211–232

    Article  Google Scholar 

  • Valdiya KS (1995) Proterozoic sedimentation and Pan-African geodynamic development in the Himalaya. Precambr Res 74:35–55

    Article  Google Scholar 

  • Vance D, Bickle M, Ivy-Ochs S et al (2003) Erosion and exhumation in the Himalaya from cosmogenic isotope inventories of river sediments. Earth Planet Sci Lett 206:273–288

    Google Scholar 

  • Vijith H, Satheesh R (2006) GIS based morphometric analysis of two major upland sub-watersheds of Meenachil river in Kerala. J Indian Soc Remote Sens 34(2):181–185

    Article  Google Scholar 

  • Wobus CW, Hodges KV, Whipple KX (2003) Has focused denudation sustained active thrusting at the Himalayan topographic front? Geology 31:861–864. doi:10.1130/G19730.1

    Article  Google Scholar 

  • Wobus CW, Helmsath A, Whipple KX et al (2005) Active out-of-sequence thrust faulting in the central Nepalese Himalaya. Nature 434:1008–1011

    Article  Google Scholar 

  • Yin A (2006) Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth Sci Rev 76:1–131

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. P. Shukla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shukla, D.P., Dubey, C.S., Ningreichon, A.S. et al. GIS-based morpho-tectonic studies of Alaknanda river basin: a precursor for hazard zonation. Nat Hazards 71, 1433–1452 (2014). https://doi.org/10.1007/s11069-013-0953-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-013-0953-y

Keywords

Navigation