Skip to main content

Advertisement

Log in

Debris-flow susceptibility analysis using fluvio-morphological parameters and data mining: application to the Central-Eastern Pyrenees

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Based on debris-flow inventories and using a geographical information system, the susceptibility models presented here take into account fluvio-morphologic parameters, gathered for every first-order catchment. Data mining techniques on the morphometric parameters are used, to work out and test three different models. The first model is a logistic regression analysis based on weighting the parameters. The other two are classification trees, which are rather novel susceptibility models. These techniques enable gathering the necessary data to evaluate the performance of the models tested, with and without optimization. The analysis was performed in the Catalan Pyrenees and covered an area of more than 4,000 km2. Results related to the training dataset show that the optimized models performance lie within former reported range, in terms of AUC, although closer to the lowest end (near 70 %). When the models are applied to the test set, the quality of most results decreases. However, out of the three different models, logistic regression seems to offer the best prediction, as training and test sets results are very similar, in terms of performance. Trees are better at extracting laws from a training set, but validation through a test set gives results unacceptable for a prediction at regional scale. Although omitting parameters in geology or vegetation, fluvio-morphologic models based on data mining, can be used in the framework of a regional debris-flow susceptibility assessment in areas where only a digital elevation model is available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alcoverro J, Corominas J, Gomez M (1999) The Barranco de Arás flood of 7 August 1996 (Biescas, Central Pyrenees, Spain). Eng Geol 51:237–255

    Article  Google Scholar 

  • Bacchini M, Zannoni A (2003) Relations between rainfall and triggering of debris-flow: case study of Cancia (Dolomites, Northeastern Italy. Nat Hazard Earth Syst Sci 3:71–79

    Article  Google Scholar 

  • Baeza C (1994) Evaluación de las condiciones de rotura y la movilidad de los deslizamientos superficiales mediante el uso de técnicas de análisis multivariante. PhD thesis, Universitat Politècnica de Catalunya, Barcelona, Spain (in Spanish)

  • Baeza C, Corominas J (2001) Assessment of shallow landslide susceptibility by means of multivariate statistical techniques. Earth Surf Process Landf 26:1251–1263

    Article  Google Scholar 

  • Baeza C, Lantada N, Moya J (2010) Validation and evaluation of two multivariate statistical models for predictive shallow landslide susceptibility mapping of the Eastern Pyrenees (Spain). Environ Earth Sci 61:507–523

    Article  Google Scholar 

  • Blahut J, van Westen CJ, Sterlacchini S (2010) Analysis of landslide inventories for accurate prediction of debris-flow source areas. Geomorphology 119:36–51. doi:10.1016/j.geomorph.2010.02.017

    Article  Google Scholar 

  • Breiman L, Friedman J, Olshen R, Stone C (1984) Classification and regression trees. Chapman and Hall, London

    Google Scholar 

  • Breiman L, Friedman J, Olshen R, Stone C, Steinberg D, Colla P (1995) Cart: classification and regression trees. Chapman and Hall, London

    Google Scholar 

  • Burrough PA, McDonell RA (1998) Principles of Geographical Information Systems. Oxford University Press, New York, p 190

    Google Scholar 

  • Carrara A, Cardinali M, Detti R, Guzzetti F, Pasqui V, Reichenbach P (1991) GIS techniques and statistical models in evaluating landslide hazard. Earth Surf Process Landf 16:427–445

    Article  Google Scholar 

  • Carrara A, Crosta G, Frattini P (2008) Comparing models of debris-flow susceptibility in the alpine environment. Geomorphology 94:353–378. doi:10.1016/j.geomorph.2006.10.033

    Article  Google Scholar 

  • Catani F, Casagli N, Ermini L, Righini G, Menduni G (2005) Landslide hazard and risk mapping at catchment scale in the Arno River basin. Landslides 2:329–342. doi:10.1007/s10346-005-0021-0

    Article  Google Scholar 

  • Chen C-Y, Yu FC (2011) Morphometric analysis of debris flows and their source areas using GIS. Geomorphology 129:387–397. doi:10.1016/j.geomorph.2011.03.002

    Article  Google Scholar 

  • Chorley RJ (1957) Illustrating the laws of morphometry. Geol Mag 94:140–150

    Article  Google Scholar 

  • Chung CF, Fabbri AG (2003) Validation of spatial prediction models for landslide hazard mapping. Nat Hazards 30(3):451–472

    Article  Google Scholar 

  • Clotet N, Gallart F (1984) Inventari de degradacions de vessants originades pels aiguats de novembre de 1982, a les altes conques del Llobregat i Cardener. Servei Geològic de la Generalitat de Catalunya, Barcelona, Spain (in Spanish)

  • Coe JA, Godt JW, Baum RL, Buckman RC Michael JA (2004) Landslide susceptibility from topography in Guatemala. In: Lacerda WA, Ehrlich M, Fontoura AB, Sayao A (eds), Landslides evaluation and stabilization, Proceedings 1Xth symposium on landslides, Balkema, Leiden, pp 69–78

  • Coehlo-Netto AL, Avelar AS, Fernandes MC, Lacerda WA (2006) Landslide susceptibility in a mountainous geoecosystem, Tijuca Massif, Rio de Janeiro: the role of morphometric subdivision of the terrain. Geomorphology 87:120–131

    Article  Google Scholar 

  • Coussot P, Meunier M (1996) Recognition, classification and mechanical description of debris flows. Earth Sci Rev 40:209–227

    Article  Google Scholar 

  • Cuadrat JM, Pita MF (1997) Climatologia. Catedra, Madrid, Spain (in Spanish)

  • ECORS Pyrenees Team (1988) The ECORS deep reflection seismic survey across the Pyrenees. Nature 331:508–510

    Article  Google Scholar 

  • Fawcett T (2006) An introduction to ROC analysis. Pattern Recognit Lett 27:861–874

    Article  Google Scholar 

  • Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage WZ, On behalf of the JTC-1 Joint Technical Committee on Landslides and Engineered Slopes (2008) Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Eng Geol 102:85–98

    Article  Google Scholar 

  • Fitzgerald PG, Muñoz JA, Coney PJ, Baldwin SL (1999) Asymmetric exhumation across the Pyrenean orogen: implications for the tectonic evolution of a collisional orogen. Earth Planet Sci Lett 173(3):157–170

    Article  Google Scholar 

  • Frattini P, Crosta G, Carrara A (2010) Techniques for evaluating the performance of landslide susceptibility models. Eng Geol 111:62–72

    Article  Google Scholar 

  • Gentile F, Bisantino T, Trisorio Liuzzi G (2008) Debris flow risk analysis in South Gargano watersheds (Southern Italy). Nat Hazards 44:1–17

    Article  Google Scholar 

  • Gini C (1912) Variabilità e mutabilità, C. Cuppini, Bologna, 156 p. Reprinted in Memorie di metodologica statistica (1955), Pizetti E, Salvemini T (eds). Rome (in Italiano)

  • Guinau M, Pallas R, Vilaplana JM (2005) A feasible methodology for landslide susceptibility assessment in developing countries: a case-study of NW Nicaragua after Hurricane Mitch. Eng Geol 80:316–327

    Article  Google Scholar 

  • Guthrie RH, Evans SG (2007) Work, persistence, and formative events: the geomorphic impact of landslides. Geomorphology 88:266–275

    Article  Google Scholar 

  • Guzzetti F, Reichenbach P, Cardinali M, Galli M, Ardizzone F (2005) Probabilistic landslide hazard assessment at the basin scale. Geomorphology 71:272–299

    Article  Google Scholar 

  • Guzzetti F, Reichenbach P, Ardizzone F, Cardinali M, Galli M (2006) Estimating the quality of landslide susceptibility models. Geomorphology 81:166–184

    Article  Google Scholar 

  • Horton RE (1932) Drainage basin characteristics. Trans Am Geophys Union 13:350–361

    Google Scholar 

  • Hungr O, Morgan GC, Kellerhals R (1984) Quantitative analysis of debris torrent hazards for design of remedial measures. Can Geotech J 21:663–677

    Article  Google Scholar 

  • Hungr O, Evans SG, Bovis MJ, Hutchinson JN (2001) A review of the classification of landslides of the flow type. Environ Eng Geosci 3:221–238

    Google Scholar 

  • Hungr O, Leroueil S, Picarelli L (2012) Varnes classification of landslide types, an update. In: XI international symposium on landslides and engineered, Banff, Canada, pp 47–58

  • Hürlimann M, Corominas J, Moya J, Copons R (2003) Debris-flow events in the eastern Pyrenees: preliminary study on initiation and propagation. In: Rickenmann D, Chen CL (eds) Debris-flow hazard mechanics: prediction, mitigation and assessment. Millpress, Rotterdam, pp 115–126

    Google Scholar 

  • ICC, Institut Cartografic de Catalunya (2003) Mapa geologic de Catalunya 1:250 000. ICC, Barcelona

    Google Scholar 

  • Iverson RH (1997) The physics of debris flows. Rev Geophys 35(3):245–296

    Article  Google Scholar 

  • Jakob M (2005a) A size classification for debris flows. Eng Geol 79:151–161

    Article  Google Scholar 

  • Jakob M (2005b) Debris flow hazard assessment. In: Jakob M, Hungr O (eds) Debris flow hazard assessment and related phenomena, chapter 17. Springer, Heidelberg

    Google Scholar 

  • Jakob M, Hungr O (2005) Debris flow hazard assessment and related phenomena. Springer, Heidelberg

    Google Scholar 

  • Jenson SK, Domingue JO (1988) Extracting topographic structure from digital elevation data for geographic information system analysis. Photogramm Eng Remote Sensing 54(11):1593–1600

    Google Scholar 

  • Landwehr N, Hall M, Frank E (2005) Logistic model trees. Mach Learn 59:161–205

    Article  Google Scholar 

  • Lynn G (2005) Macrogeomorphology and erosional history of the post-orogenic Pyrenean mountain belt. Ph.D. thesis, The University of Edinburgh, Edinburgh, pp 388

  • Martin VJ, Olcina CJ (2001) Climas y Tiempos de España. Alianza (ed), Madrid (in Spanish)

  • Melelli L, Taramelli A (2004) An example of debris-flows hazard modeling using GIS. Nat Hazard Earth Syst Sci 4:347–358

    Article  Google Scholar 

  • Melton MA (1965) The morphologic and paleoclimatic significance of alluvial deposits in southern Arizona. J Geol 73:1–38

    Article  Google Scholar 

  • Montgomery DR, Dietrich WE (1988) Where do channels begin? Nature 336:232–234

    Article  Google Scholar 

  • Montgomery DR, Dietrich WE (1989) Source areas, drainage density, and channel initiation. Water Resour Res 25:1907–1918

    Article  Google Scholar 

  • Muñoz JA (1992) Evolution of a continental collision belt: ECORS-Pyrenees crustal balanced cross-section. In: McClay KR (ed) Thrust tectonics. Chapman and Hall, London, pp 235–246

    Chapter  Google Scholar 

  • O’Callaghan JF, Mark DM (1984) The extraction of drainage networks from digital elevation data. Comp Vis Graph Image Process 28(3):323–344

    Article  Google Scholar 

  • Okunishi K, Suwa H (2001) Assessment of debris-flow hazards of alluvial fans. Nat Hazard 23:259–269

    Article  Google Scholar 

  • Parde M (1941) La formidable crue d’octobre 1940 dans les Pyrénées-Orientales. Rev Geog Pyré et du Sud-Ouest 12:237–279 (in French)

    Google Scholar 

  • Pike RJ (2002) A bibliography of terrain modeling (geomorphometry), the quantitative representation of topography. USGS Open file report 02-465

  • Portilla M (2010) Análisis del campo de densidad de movimientos en masa del área Molló-Queralbs (in Spanish). Internal report BarcelonaTech—UPC (in Spanish)

  • Portilla M, Chevalier G, Hürlimann M (2010) Description and analysis of the debris flows occurred during 2008 in the Eastern Pyrenees. Nat Hazards Earth Syst Sci 10:1635–1645. doi:10.5194/nhess-10-1635-2010

    Article  Google Scholar 

  • Remondo J, Gonzalez A, Diaz de Teran JR, Cendrero A, Fabbri A, Chung C-JF (2003) Validation of landslide susceptibility maps; examples and applications from a case study in Northern Spain. Nat Hazards 30:437–449

    Article  Google Scholar 

  • Rickenmann D (1999) Empirical relationships for debris flows. Nat Hazards 19:47–77

    Article  Google Scholar 

  • Rickenmann D, Zimmermann M (1993) The 1987 debris flows in Switzerland: documentation and analysis. Geomorphology 8:175–189

    Article  Google Scholar 

  • Santacana N, Baeza C, Corominas J, Paz AD, Marturia J (2003) A GIS-based multivariate statistical analysis for shallow landslide susceptibility mapping in La Pobla de Lillet Area (Eastern Pyrenees, Spain). Nat Hazards 30:281–295

    Article  Google Scholar 

  • Schumm SA (1956) The evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Bull Geol Soc Am 67:597–646

    Article  Google Scholar 

  • Sterlacchini J, Ballabio C, Blahut J, Masetti M, Sorichetta A (2011) Spatial agreement of predicted patterns in landslide susceptibility maps. Geomorphology 125:51–61

    Article  Google Scholar 

  • Tarboton DG (1997) A new method for the determination of flow directions and contributing areas in grid digital elevation models. Water Resour Res 33(2):309–319

    Article  Google Scholar 

  • Tarboton DG, Ames DP (2001) Advances in the mapping of flow networks from digital elevation data. World Water and Environmental Resources Congress. ASCE, Orlando, FL

    Google Scholar 

  • Tarboton DG, Bras RL, Rodriguez-Iturbe I (1991) On the extraction of channel networks from digital elevation data. Hydrol Process 5:81–100

    Article  Google Scholar 

  • Teixell A (1998) Crustal structure and orogenic material budget in the West-Central Pyrenees. Tectonics 17:395–406

    Article  Google Scholar 

  • Wan S, Lei TC (2009) A knowledge-based decision support system to analyze the debris-flow problems at Chen-Yu-Lan River, Taiwan. Knowl Based Syst 22:580–588. doi:10.1016/j.knosys.2009.07.008

    Article  Google Scholar 

  • Wan S, Lei TC, Huang PC, Chou TY (2008) The knowledge rules of debris flow event: a case study for investigation Chen Yu Lan River, Taiwan. Eng Geol 98:102–114

    Article  Google Scholar 

  • Welsh A, Davies TRH (2010) Identification of alluvial fans susceptible to debris-flow hazards. Landslides. doi:10.1007/s10346-010-0238-4

    Google Scholar 

  • Wilson JP, Gallant JC (2000) Terrain analysis: principles and applications. Wiley, London

    Google Scholar 

  • Witten IH, Frank E, Hall MA (2011) Data mining: practical machine learning tools and techniques, 3rd edn. Morgan Kaufmann, Burlington

    Google Scholar 

  • Zavoianu I (1978) Morphometry of drainage basins. Elsevier, Amsterdam

    Google Scholar 

Download references

Acknowledgments

This research was financially supported by the European project IMPRINTS (EC FP7 - contract ENV-2008-1-226555), the Spanish DEBRISCATCH project (contract CGL2008 - 00299/BTE) and the Spanish project CGL2009-13039 from the Ministerio de Ciencia e Innovación. The authors would like to thank the Institut Geològic de Catalunya and the Institut Cartogràfic de Catalunya for the supply of the DEM. The manuscript improved thanks to two anonymous reviewers, which are thanked for their comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. G. Chevalier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chevalier, G.G., Medina, V., Hürlimann, M. et al. Debris-flow susceptibility analysis using fluvio-morphological parameters and data mining: application to the Central-Eastern Pyrenees. Nat Hazards 67, 213–238 (2013). https://doi.org/10.1007/s11069-013-0568-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-013-0568-3

Keywords

Navigation