Skip to main content

Advertisement

Log in

Lava flow simulations using discharge rates from thermal infrared satellite imagery during the 2006 Etna eruption

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Techniques capable of measuring lava discharge rates during an eruption are important for hazard prediction, warning, and mitigation. To this end, we developed an automated system that uses thermal infrared satellite MODIS data to estimate time-averaged discharge rate. MODIS-derived time-varying discharge rates were used to drive lava flow simulations calculated using the MAGFLOW cellular automata model, allowing us to simulate the discharge rate-dependent spread of lava as a function of time. During the July 2006 eruption of Mount Etna (Sicily, Italy), discharge rates were estimated at regular intervals (i.e., up to 2 times/day) using the MODIS data. The eruption lasted 10 days and produced a ~3-km-long lava flow field. Time-averaged discharge rates extracted from 13 MODIS images were utilized to produce a detailed chronology of lava flow emplacement, demonstrating how infrared satellite data can be used to drive numerical simulations of lava flow paths during an ongoing eruptive event. The good agreement between simulated and mapped flow areas indicates that model-based inundation predictions, driven by time-varying discharge rate data, provide an excellent means for assessing the hazard posed by ongoing effusive eruptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ackerman S, Strabala K, Menzel P, Frey R, Moeller C, Gumley L (2002) Discriminating clear-sky from cloud with MODIS. Algorithm theoritical basis document (MOD35). NASA Goddard Space Flight Center

  • Bailey JE, Harris AJL, Dehn J, Calvari S, Rowland SK (2006) The changing morphology of an open lava channel on Mt Etna. Bull Volcanol 68:497–515

    Article  Google Scholar 

  • Behncke B, Neri M (2003) The July–August 2001 eruption of Mt. Etna (Sicily). Bull Volcanol 65:461–476

    Article  Google Scholar 

  • Bencke B, Giammanco S (2006) Rapporto eruzione Etna. INGV Report 19 Luglio 2006

  • Branca S, Consoli S (2006) Rapporto Eruzione Etna. INGV Report 15 Luglio 2006

  • Branca S, Burton M, Calvari S, Lodato L, Norini G, Spampinato L (2006a) Rapporto eruzione Etna. INGV Report 17 Luglio 2006

  • Branca S, Calvari S, Coltelli M, Del Carlo P, Lodato L (2006b) Rapporto eruzione Etna. INGV Report 16 Luglio 2006

  • Burton M, Calvari S, Lodato L (2006a) Rapporto eruzione Etna. INGV Report 17 Luglio 2006

  • Burton M, Di Vito M, Giordano D, Marotta E, Orsi G (2006b) Aggiornamento eruzione Etna. INGV Report 23 Luglio 2006

  • Burton M, Miraglia L, Spampinato L, Norini G (2006c) Rapporto eruzione Etna. INGV Report 19 Luglio 2006

  • Calvari S, Coltelli M, Neri M, Pompilio M, Scribano V (1994) The 1991–93 Etna eruption: chronology and geological observations. Acta Vulcanol 4:1–15

    Google Scholar 

  • Calvari S, Neri M, Pinkerton H (2003) Effusion rate estimations during the 1999 summit eruption on Mount Etna, and growth of two distinct lava flow fields. J Volcanol Geotherm Res 119:107–123

    Article  Google Scholar 

  • Calvari S, Spampinato L, Lodato L, Harris AJL, Patrick MR, Dehn J, Burton MR, Andronico D (2005) Chronology and complex volcanic processes during the 2002–2003 flank eruption at Stromboli Volcano (Italy) reconstructed from direct observations and surveys with a hand-held thermal camera. J Geophys Res 110:B02201. doi:10.1029/2004JB003129

    Article  Google Scholar 

  • Calvari S, Di Vito M, Orsi G (2006) Rapporto eruzione Etna. INGV Report 24 luglio 2006

  • Corsaro R, Neri M (2006) Rapporto eruzione Etna. INGV Report 15 Luglio 2006

  • Costa A, Macedonio G (2005) Numerical simulation of lava flows based on depth-averaged equations. Geophys Res Lett 32:L05304. doi:10.1029/2004GL021817

    Article  Google Scholar 

  • Crisci GM, Di Gregorio S, Pindaro O, Ranieri G (1986) Lava flow simulation by a discrete cellular model: first implementation. Int J Model Simul 6:137–140

    Google Scholar 

  • Crisci GM, Iovine G, Di Gregorio S, Lupiano V (2008) Lava-flow hazard on the SE flank of Mt Etna (southern Italy). J Volcanol Geotherm Res. doi:10.1016/j.jvolgeores.2008.01.041

  • Crisp J, Baloga S (1990) A model for lava flows with two thermal components. J Geophys Res 95:1255–1270

    Article  Google Scholar 

  • Dehn J, Dean KG, Engle K (2000) Thermal monitoring of North Pacific volcanoes from space. Geology 28:755–758

    Article  Google Scholar 

  • Del Negro C, Fortuna L, Herault A, Vicari A (2007) Simulations of the 2004 lava flow at Etna volcano by the MAGFLOW cellular automata model. Bull Volcanol. doi:10.1007/s00445-007-0168-8

  • Dozier J (1981) A method for satellite identification of surface temperature fields of subpixel resolution. Remote Sens Environ 11:221–229

    Article  Google Scholar 

  • Favalli M, Pareschi MT, Neri A, Isola I (2005) Forecasting lava flow paths by a stochastic approach. Geophys Res Lett 32:L03305. doi:10.1029/2004GL021718

    Article  Google Scholar 

  • Flynn LP, Harris AJL, Rothery DA, Oppenheimer C (2000) High-spatial resolution remote sensing of active volcanic features using Landsat and hyperspectral data. Remote Sensing of Active Volcanism, AGU Monograph 116, pp 161–177

  • Frazzetta G, Romano R (1984) The 1983 Etna eruption: event chronology and morphological evolution of the lava flow. Bull Volcanol 47:1079–1096

    Article  Google Scholar 

  • Giordano D, Dingwell D (2003) Viscosity of hydrous Etna basalt: implications for Plinian-style basaltic eruptions. Bull Volcanol 65:8–14

    Google Scholar 

  • Harris AJL (1996) Low spatial resolution thermal monitoring of volcanoes from space. PhD Thesis, Department of Earth Sciences, The Open University, p 315

  • Harris AJL, Rowland SK (2001) FLOWGO: a kinematic thermo-rheological model for lava flowing in a channel. Bull Volcanol 63:20–44

    Article  Google Scholar 

  • Harris AJL, Swabey SEJ, Higgins J (1995) Automated thresholding of active lavas using AVHRR data. Int J Remote Sens 16(18):3681–3686

    Article  Google Scholar 

  • Harris AJL, Blake S, Rothery D, Stevens N (1997a) A chronology of the 1991 to 1993 Mount Etna eruption using advanced very high resolution radiometer data: implications for real-time thermal volcano monitoring. J Geophys Res 102:7985–8003

    Article  Google Scholar 

  • Harris AJL, Butterworth AL, Carlton RW, Downey I, Miller P, Navarro P, Rothery DA (1997b) Low-cost volcano surveillance from space: case studies from Etna, Krafla, Cerro Negro, Fogo, Lascar and Erebus. Bull Volcanol 59:49–64

    Article  Google Scholar 

  • Harris AJL, Flynn L, Keszthelyi L, Mouginis-Mark P, Rowland S, Resing J (1998) Calculation of lava effusion rates from Landsat TM data. Bull Volcanol 60:52–71

    Article  Google Scholar 

  • Harris AJL, Murray JB, Aries SE, Davies MA, Flynn LP, Wooster MJ, Wright R, Rothery DA (2000) Effusion rate trends at Etna and Krafla and their implications for eruptive mechanisms. J Volcanol Geotherm Res 102:237–270

    Article  Google Scholar 

  • Harris AJL, Dehn J, Patrick MR, Calvari S, Ripepe M, Lodato L (2006) Lava effusion rates from hand-held thermal infrared imagery: an example from the June 2003 effusive activity at Stromboli. Bull Volcanol 68(2):107–117

    Article  Google Scholar 

  • Harris AJL, Dehn J, Calvari S (2007) Lava effusion rate definition and measurement: a review. Bull Volcanol. doi:10.1007/s00445-007-0120-y

  • Herault A, Vicari A, Ciraudo A, Del Negro C (2008) Forecasting lava flow hazard during the 2006 Etna eruption: using the MAGFLOW cellular automata model. Comput Geosci. doi:10.1016/j.cageo.2007.10.008

  • Higgins J, Harris AJL (1997) VAST: a program to locate and analyse volcanic thermal anomalies automatically from remotely sensed data. Comput Geosci 23(6):627–645

    Article  Google Scholar 

  • Ishihara K, Iguchi M, Kamo K (1990) Numerical simulation of lava flows on some volcanoes in Japan. In: Fink JK (ed) Lava flows and domes: emplacement mechanisms and hazard implications. Springer, Berlin, pp 174–207

    Google Scholar 

  • Mei CC, Yuhi M (2001) Slow flow of a Bingham fluid in a shallow channel of finite width. J Fluid Mech 431:135–160

    Article  Google Scholar 

  • Miyamoto H, Sasaki S (1997) Simulating lava flows by an improved cellular automata method. Comput Geosci 23(3):283–292

    Article  Google Scholar 

  • Pieri DC, Baloga SM (1986) Eruption rate, area, and length relationships for some Hawaiian lava flows. J Volcanol Geotherm Res 30:29–45

    Article  Google Scholar 

  • Pieri DC, Glaze LS, Abrams MJ (1990) Thermal radiance observations of an active lava flow during the June 1984 eruption of Mount Etna. Geology 18:1018–1022

    Article  Google Scholar 

  • Pinkerton H (1993) Measuring the properties of flowing lavas. In: Kilburn CRJ, Luongo G (eds) Active lavas. UCL Press, London, pp 175–191

    Google Scholar 

  • Pinkerton H, Sparks RSJ (1976) The 1975 subterminal lavas, Mount Etna: a case history of the formation of a compound lava field. J Volcanol Geotherm Res 1:167–182

    Article  Google Scholar 

  • Pinkerton H, Sparks RSJ (1978) Field measurements of the rheology of lava. Nature 276:383–385

    Article  Google Scholar 

  • Pinkerton H, Wilson L (1994) Factors controlling the lengths of channel-fed lava flows. Bull Volcanol 56:108–120

    Google Scholar 

  • Rothery DA, Francis PW, Wood CA (1988) Volcano monitoring using short wavelength infrared data from satellites. J Geophys Res 93:7992–8008

    Article  Google Scholar 

  • Vicari A, Herault A, Del Negro C, Coltelli M, Marsella M, Proietti C (2007) Simulations of the 2001 lava flow at Etna volcano by the MAGFLOW cellular automata model. Environ Model Softw 22:1465–1471

    Article  Google Scholar 

  • Wadge G (1978) Effusion rate and the shape of aa lava flows fields on Mount Etna. Geology 6:503–506

    Article  Google Scholar 

  • Walker GPL (1973) Lengths of lava flows. Phil Trans R Soc Lond 274:107–118

    Article  Google Scholar 

  • Wright R, Blake S, Harris A, Rothery D (2001) A simple explanation for the space-based calculation of lava eruption rates. Earth Planet Sci Lett 192:223–233

    Article  Google Scholar 

  • Wright R, Flynn L, Garbeil H, Harris A, Pilger E (2004) MODVOLC: near-real-time thermal monitoring of global volcanism. J Volcanol Geotherm Res 135:29–49

    Article  Google Scholar 

  • Young P, Wadge G (1990) FLOWFRONT: simulation of a lava flow. Comput Geosci 16(8):1171–1191

    Article  Google Scholar 

Download references

Acknowledgment

We are grateful to NASA for the infrared satellite imagery acquired by MODIS sensors onboard Terra and Aqua satellites. We are indebted to all personal of UFVG of INGV-CT who ensure the regular mapping of the lava flow field. Thanks are due to Maria Marsella (University of Rome “La Sapienza”) for making the Digital Elevation Model of Etna available. We are grateful to Andrew Harris and two anonymous reviewers for constructive and helpful comments that greatly improved the manuscript. This study was performed with financial support from the ETNA project (DPC-INGV 2004–2006 contract) to the TecnoLab organized by DIEES-UNICT and INGV-CT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annamaria Vicari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vicari, A., Ciraudo, A., Del Negro, C. et al. Lava flow simulations using discharge rates from thermal infrared satellite imagery during the 2006 Etna eruption. Nat Hazards 50, 539–550 (2009). https://doi.org/10.1007/s11069-008-9306-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-008-9306-7

Keywords

Navigation