Skip to main content

Advertisement

Log in

Up-Regulation of Cdc37 Contributes to Schwann Cell Proliferation and Migration After Sciatic Nerve Crush

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Cell division cycle protein 37 (Cdc37), a molecular chaperone takes part in a series of cellular processes including cell signal transduction, cell cycle progression, cell proliferation, cell motility, oncogenesis and malignant progression. It can not only recruit immature protein kinases to HSP90 but also work alone. Cdc37 was reported to be associated with neurogenesis, neurite outgrowth, axon guidance and myelination. However, the roles of Cdc37 on Schwann cells (SC) after peripheral nerve injury (PNI) remain unknown. In this study, we found that the expression of Cdc37 increased and reached the peak at 1 week after sciatic nerve crush (SNC), which was consistent with that of proliferation cell nuclear antigen. Immunofluorescence verified that Cdc37 co-localized with SC in vivo and in vitro. Intriguingly, Cdc37 protein level was potentiated in the model of TNF-α-induced SC proliferation. Moreover, we found that Cdc37 silencing impaired proliferation of SC in vitro. Moreover, Cdc37 suppression attenuated kinase signaling pathways of Raf–ERK and PI3K/AKT which are crucial cell signaling for SC proliferation. Finally, we found that Cdc37 silencing inhibited SC migration in vitro. In conclusion, we demonstrated that the way Cdc37 contributed to SC proliferation is likely via activating kinase signaling pathways of Raf–ERK and PI3K/AKT, and CDC37 was also involved in SC migration after SNC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhang Z et al (2016) Fibroblast-derived tenascin-C promotes Schwann cell migration through beta1-integrin dependent pathway during peripheral nerve regeneration. Glia 64(3):374–385

    Article  PubMed  Google Scholar 

  2. Campbell WW (2008) Evaluation and management of peripheral nerve injury. Clin Neurophysiol 119(9):1951–1965

    Article  PubMed  Google Scholar 

  3. Frostick SP, Yin Q, Kemp GJ (1998) Schwann cells, neurotrophic factors, and peripheral nerve regeneration. Microsurgery 18(7):397–405

    Article  PubMed  CAS  Google Scholar 

  4. Zhang W et al (2016) SCY1-like 1-binding protein 1 (SCYL1BP1) suppressed sciatic nerve regeneration by enhancing the RhoA pathway. Mol Neurobiol 53(9):6342–6354

    Article  PubMed  CAS  Google Scholar 

  5. Smith JR et al (2009) Silencing the cochaperone CDC37 destabilizes kinase clients and sensitizes cancer cells to HSP90 inhibitors. Oncogene 28(2):157–169

    Article  PubMed  CAS  Google Scholar 

  6. Gray PJ Jr, Stevenson MA, Calderwood SK (2007) Targeting Cdc37 inhibits multiple signaling pathways and induces growth arrest in prostate cancer cells. Cancer Res 67(24):11942–11950

    Article  PubMed  CAS  Google Scholar 

  7. Schwarze SR, Fu VX, Jarrard DF (2003) Cdc37 enhances proliferation and is necessary for normal human prostate epithelial cell survival. Cancer Res 63(15):4614–4619

    PubMed  CAS  Google Scholar 

  8. Wang Z et al (2015) Suppressing the CDC37 cochaperone in hepatocellular carcinoma cells inhibits cell cycle progression and cell growth. Liver Int 35(4):1403–1415

    Article  PubMed  CAS  Google Scholar 

  9. El Hamidieh A, Grammatikakis N, Patsavoudi E (2012) Cell surface Cdc37 participates in extracellular HSP90 mediated cancer cell invasion. PLoS ONE 7(8):e42722

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Boudeau J et al (2003) Heat-shock protein 90 and Cdc37 interact with LKB1 and regulate its stability. Biochem J 370(Pt 3):849–857

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Pooya S et al (2014) The tumour suppressor LKB1 regulates myelination through mitochondrial metabolism. Nat Commun 5:4993

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Xu W, Neckers L (2012) The double edge of the HSP90-CDC37 chaperone machinery: opposing determinants of kinase stability and activity. Future Oncol 8(8):939–942

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Beirowski B et al (2014) Metabolic regulator LKB1 is crucial for Schwann cell-mediated axon maintenance. Nat Neurosci 17(10):1351–1361

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Jinwal UK et al (2011) The Hsp90 kinase co-chaperone Cdc37 regulates tau stability and phosphorylation dynamics. J Biol Chem 286(19):16976–16983

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Zha GB et al (2016) Changes in microtubule-associated protein tau during peripheral nerve injury and regeneration. Neural Regen Res 11(9):1506–1511

    PubMed  PubMed Central  Google Scholar 

  16. Yao L et al (2016) CRMP1 interacted with Spy1 during the collapse of growth cones induced by Sema3A and acted on regeneration after sciatic nerve crush. Mol Neurobiol 53(2):879–893

    Article  PubMed  CAS  Google Scholar 

  17. Wang Y et al (2015) Up-regulation of NF45 correlates with Schwann cell proliferation after sciatic nerve crush. J Mol Neurosci 56(1):216–227

    Article  PubMed  CAS  Google Scholar 

  18. Honkanen H et al (2007) Isolation, purification and expansion of myelination-competent, neonatal mouse Schwann cells. Eur J Neurosci 26(4):953–964

    Article  PubMed  Google Scholar 

  19. Yao L et al (2014) FBP1 and p27kip1 expression after sciatic nerve injury: implications for Schwann cells proliferation and differentiation. J Cell Biochem 115(1):130–140

    Article  PubMed  CAS  Google Scholar 

  20. Pearl LH (2005) Hsp90 and Cdc37—a chaperone cancer conspiracy. Curr Opin Genet Dev 15(1):55–61

    Article  PubMed  CAS  Google Scholar 

  21. Stepanova L et al (2000) The oncoprotein kinase chaperone CDC37 functions as an oncogene in mice and collaborates with both c-myc and cyclin D1 in transformation of multiple tissues. Mol Cell Biol 20(12):4462–4473

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. He B et al (2011) Carboxymethylated chitosan stimulates proliferation of Schwann cells in vitro via the activation of the ERK and Akt signaling pathways. Eur J Pharmacol 667(1–3):195–201

    Article  PubMed  CAS  Google Scholar 

  23. Grover A et al (2011) Hsp90/Cdc37 chaperone/co-chaperone complex, a novel junction anticancer target elucidated by the mode of action of herbal drug Withaferin A. BMC Bioinform 12(Suppl 1):S30

    Article  Google Scholar 

  24. Napoli I et al (2012) A central role for the ERK-signaling pathway in controlling Schwann cell plasticity and peripheral nerve regeneration in vivo. Neuron 73(4):729–742

    Article  PubMed  CAS  Google Scholar 

  25. Roberts PJ, Der CJ (2007) Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 26(22):3291–3310

    Article  PubMed  CAS  Google Scholar 

  26. Han IS et al (2007) Cdc2-mediated Schwann cell migration during peripheral nerve regeneration. J Cell Sci 120(Pt 2):246–255

    Article  PubMed  CAS  Google Scholar 

  27. Turnbull EL, Martin IV, Fantes PA (2006) Activity of Cdc2 and its interaction with the cyclin Cdc13 depend on the molecular chaperone Cdc37 in Schizosaccharomyces pombe. J Cell Sci 119(Pt 2):292–302

    Article  PubMed  CAS  Google Scholar 

  28. Zhao Y et al (2017) Chitosan degradation products facilitate peripheral nerve regeneration by improving macrophage-constructed microenvironments. Biomaterials 134:64–77

    Article  PubMed  CAS  Google Scholar 

  29. Weihofen A et al (2008) Pink1 Parkinson mutations, the Cdc37/Hsp90 chaperones and Parkin all influence the maturation or subcellular distribution of Pink1. Hum Mol Genet 17(4):602–616

    Article  PubMed  CAS  Google Scholar 

  30. Liang J, Fantes P (2007) The Schizosaccharomyces pombe Cdc7 protein kinase required for septum formation is a client protein of Cdc37. Eukaryot Cell 6(7):1089–1096

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Moorthamer M et al (1998) The p16(INK4A) protein and flavopiridol restore yeast cell growth inhibited by Cdk4. Biochem Biophys Res Commun 250(3):791–797

    Article  PubMed  CAS  Google Scholar 

  32. Pascale RM et al (2005) Role of HSP90, CDC37, and CRM1 as modulators of P16(INK4A) activity in rat liver carcinogenesis and human liver cancer. Hepatology 42(6):1310–1319

    Article  PubMed  CAS  Google Scholar 

  33. Atanasoski S et al (2008) Postnatal Schwann cell proliferation but not myelination is strictly and uniquely dependent on cyclin-dependent kinase 4 (cdk4). Mol Cell Neurosci 37(3):519–527

    Article  PubMed  CAS  Google Scholar 

  34. Wu W, Liu Y, Wang Y (2016) Sam68 promotes Schwann cell proliferation by enhancing the PI3K/Akt pathway and acts on regeneration after sciatic nerve crush. Biochem Biophys Res Commun 473(4):1045–1051

    Article  PubMed  CAS  Google Scholar 

  35. Martensson L et al (2007) Activation of extracellular-signal-regulated kinase-1/2 precedes and is required for injury-induced Schwann cell proliferation. Neuroreport 18(10):957–961

    Article  PubMed  CAS  Google Scholar 

  36. Chang YM et al (2017) Alpinia oxyphylla Miq. fruit extract activates IGFR-PI3K/Akt signaling to induce Schwann cell proliferation and sciatic nerve regeneration. BMC Complement Altern Med 17(1):184

    Article  PubMed  PubMed Central  Google Scholar 

  37. Li R et al (2017) NGF attenuates high glucose-induced ER stress, preventing Schwann cell apoptosis by activating the PI3K/Akt/GSK3beta and ERK1/2 pathways. Neurochem Res 42(11):3005–3018

    Article  PubMed  CAS  Google Scholar 

  38. Newbern JM et al (2011) Specific functions for ERK/MAPK signaling during PNS development. Neuron 69(1):91–105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 81471258).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youhua Wang.

Ethics declarations

Conflict of interest

No conflict of interests is stated by author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Wang, S., Ding, D. et al. Up-Regulation of Cdc37 Contributes to Schwann Cell Proliferation and Migration After Sciatic Nerve Crush. Neurochem Res 43, 1182–1190 (2018). https://doi.org/10.1007/s11064-018-2535-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-018-2535-6

Keywords

Navigation