Skip to main content

Advertisement

Log in

An Overview of the Mechanisms of Abnormal GABAergic Interneuronal Cortical Migration Associated with Prenatal Ethanol Exposure

  • Overview
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

GABAergic Interneuronal migration constitutes an essential process during corticogenesis. Derived from progenitor cells located in the proliferative zones of the ventral telencephalon, newly generated GABAergic Interneuron migrate to their cortical destinations. Cortical dysfunction associated with defects in neuronal migration results in severe developmental consequences. There is growing evidence linking prenatal ethanol exposure to abnormal GABAergic interneuronal migration and subsequent cortical dysfunction. Investigating the pathophysiological mechanisms behind disrupted GABAergic interneuronal migration encountered with prenatal alcohol exposure is crucial for understanding and managing fetal alcohol spectrum disorders. This review explores the molecular pathways regulating GABAergic interneuronal cortical migration that might be altered by prenatal ethanol exposure thus opening new avenues for further research in this topic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Powell EM, Campbell DB, Stanwood GD, Davis C, Noebels JL, Levitt P (2003) Genetic disruption of cortical interneuron development causes region- and GABA cell type-specific deficits, epilepsy, and behavioral dysfunction. J Neurosci 23(2):622–631

    CAS  PubMed  Google Scholar 

  2. Bartolini G, Ciceri G, Marin O (2013) Integration of GABAergic interneurons into cortical cell assemblies: lessons from embryos and adults. Neuron 79(5):849–864. doi:10.1016/j.neuron.2013.08.014

    Article  CAS  PubMed  Google Scholar 

  3. Lodato S, Rouaux C, Quast KB, Jantrachotechatchawan C, Studer M, Hensch TK, Arlotta P (2011) Excitatory projection neuron subtypes control the distribution of local inhibitory interneurons in the cerebral cortex. Neuron 69(4):763–779. doi:10.1016/j.neuron.2011.01.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Le Magueresse C, Monyer H (2013) GABAergic interneurons shape the functional maturation of the cortex. Neuron 77(3):388–405. doi:10.1016/j.neuron.2013.01.011

    Article  CAS  PubMed  Google Scholar 

  5. Varju P, Katarova Z, Madarasz E, Szabo G (2001) GABA signalling during development: new data and old questions. Cell Tissue Res 305(2):239–246

    Article  CAS  PubMed  Google Scholar 

  6. Rossignol E (2011) Genetics and function of neocortical GABAergic interneurons in neurodevelopmental disorders. Neural Plast 2011:649325. doi:10.1155/2011/649325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Reiner O, Karzbrun E, Kshirsagar A, Kaibuchi K (2016) Regulation of neuronal migration, an emerging topic in autism spectrum disorders. J Neurochem 136(3):440–456. doi:10.1111/jnc.13403

    Article  CAS  PubMed  Google Scholar 

  8. Lewis DA (2000) GABAergic local circuit neurons and prefrontal cortical dysfunction in schizophrenia. Brain Res Brain Res Rev 31(2–3):270–276

    Article  CAS  PubMed  Google Scholar 

  9. Guerrini R, Dobyns WB, Barkovich AJ (2008) Abnormal development of the human cerebral cortex: genetics, functional consequences and treatment options. Trends Neurosci 31(3):154–162. doi:10.1016/j.tins.2007.12.004

    Article  CAS  PubMed  Google Scholar 

  10. Guerrini R, Parrini E (2010) Neuronal migration disorders. Neurobiol Dis 38(2):154–166. doi:10.1016/j.nbd.2009.02.008

    Article  CAS  PubMed  Google Scholar 

  11. Lewis DA, Curley AA, Glausier JR, Volk DW (2012) Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia. Trends Neurosci 35(1):57–67. doi:10.1016/j.tins.2011.10.004

    Article  CAS  PubMed  Google Scholar 

  12. Kato M, Dobyns WB (2003) Lissencephaly and the molecular basis of neuronal migration. Hum Mol Genet 12 Spec No 1:R89–R96

    Article  CAS  PubMed  Google Scholar 

  13. Crandall JE, Hackett HE, Tobet SA, Kosofsky BE, Bhide PG (2004) Cocaine exposure decreases GABA neuron migration from the ganglionic eminence to the cerebral cortex in embryonic mice. Cereb Cortex 14(6):665–675. doi:10.1093/cercor/bhh027

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cuzon VC, Yeh PW, Yanagawa Y, Obata K, Yeh HH (2008) Ethanol consumption during early pregnancy alters the disposition of tangentially migrating GABAergic interneurons in the fetal cortex. J Neurosci 28(8):1854–1864. doi:10.1523/JNEUROSCI.5110-07.2008

    Article  CAS  PubMed  Google Scholar 

  15. Skorput AG, Gupta VP, Yeh PW, Yeh HH (2015) Persistent interneuronopathy in the prefrontal cortex of young adult Offspring exposed to ethanol in utero. J Neurosci 35(31):10977–10988. doi:10.1523/JNEUROSCI.1462-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Isayama RN, Leite PE, Lima JP, Uziel D, Yamasaki EN (2009) Impact of ethanol on the developing GABAergic system. Anat Rec (Hoboken) 292 (12):1922–1939. doi:10.1002/ar.20966

    Article  CAS  Google Scholar 

  17. Kawaguchi Y, Kubota Y (1997) GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cereb Cortex 7(6):476–486

    Article  CAS  PubMed  Google Scholar 

  18. Lee S, Hjerling-Leffler J, Zagha E, Fishell G, Rudy B (2010) The largest group of superficial neocortical GABAergic interneurons expresses ionotropic serotonin receptors. J Neurosci 30(50):16796–16808. doi:10.1523/JNEUROSCI.1869-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fogarty M, Grist M, Gelman D, Marin O, Pachnis V, Kessaris N (2007) Spatial genetic patterning of the embryonic neuroepithelium generates GABAergic interneuron diversity in the adult cortex. J Neurosci 27(41):10935–10946. doi:10.1523/JNEUROSCI.1629-07.2007

    Article  CAS  PubMed  Google Scholar 

  20. Gelman DM, Martini FJ, Nobrega-Pereira S, Pierani A, Kessaris N, Marin O (2009) The embryonic preoptic area is a novel source of cortical GABAergic interneurons. J Neurosci 29(29):9380–9389. doi:10.1523/JNEUROSCI.0604-09.2009

    Article  CAS  PubMed  Google Scholar 

  21. Gelman DM, Marin O (2010) Generation of interneuron diversity in the mouse cerebral cortex. Eur J Neurosci 31(12):2136–2141. doi:10.1111/j.1460-9568.2010.07267.x

    Article  PubMed  Google Scholar 

  22. Wonders CP, Anderson SA (2006) The origin and specification of cortical interneurons. Nat Rev Neurosci 7(9):687–696. doi:10.1038/nrn1954

    Article  CAS  PubMed  Google Scholar 

  23. Welagen J, Anderson S (2011) Origins of neocortical interneurons in mice. Dev Neurobiol 71(1):10–17. doi:10.1002/dneu.20857

    Article  PubMed  Google Scholar 

  24. de Carlos JA, Lopez-Mascaraque L, Valverde F (1996) Dynamics of cell migration from the lateral ganglionic eminence in the rat. J Neurosci 16(19):6146–6156

    PubMed  Google Scholar 

  25. Marin O (2013) Cellular and molecular mechanisms controlling the migration of neocortical interneurons. Eur J Neurosci 38(1):2019–2029. doi:10.1111/ejn.12225

    Article  PubMed  Google Scholar 

  26. Wichterle H, Turnbull DH, Nery S, Fishell G, Alvarez-Buylla A (2001) In utero fate mapping reveals distinct migratory pathways and fates of neurons born in the mammalian basal forebrain. Development 128(19):3759–3771

    CAS  PubMed  Google Scholar 

  27. Yozu M, Tabata H, Nakajima K (2005) The caudal migratory stream: a novel migratory stream of interneurons derived from the caudal ganglionic eminence in the developing mouse forebrain. J Neurosci 25(31):7268–7277. doi:10.1523/JNEUROSCI.2072-05.2005

    Article  CAS  PubMed  Google Scholar 

  28. Rubin AN, Alfonsi F, Humphreys MP, Choi CK, Rocha SF, Kessaris N (2010) The germinal zones of the basal ganglia but not the septum generate GABAergic interneurons for the cortex. J Neurosci 30(36):12050–12062. doi:10.1523/JNEUROSCI.6178-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tanaka DH, Nakajima K (2012) Migratory pathways of GABAergic interneurons when they enter the neocortex. Eur J Neurosci 35(11):1655–1660. doi:10.1111/j.1460-9568.2012.08111.x

    Article  PubMed  Google Scholar 

  30. Miyoshi G, Butt SJ, Takebayashi H, Fishell G (2007) Physiologically distinct temporal cohorts of cortical interneurons arise from telencephalic Olig2-expressing precursors. J Neurosci 27(29):7786–7798. doi:10.1523/JNEUROSCI.1807-07.2007

    Article  CAS  PubMed  Google Scholar 

  31. Del Rio JA, Soriano E, Ferrer I (1992) Development of GABA-immunoreactivity in the neocortex of the mouse. J Comp Neurol 326(4):501–526. doi:10.1002/cne.903260403

    Article  CAS  PubMed  Google Scholar 

  32. Rymar VV, Sadikot AF (2007) Laminar fate of cortical GABAergic interneurons is dependent on both birthdate and phenotype. J Comp Neurol 501(3):369–380. doi:10.1002/cne.21250

    Article  PubMed  CAS  Google Scholar 

  33. Faux C, Rakic S, Andrews W, Britto JM (2012) Neurons on the move: migration and lamination of cortical interneurons. Neurosignals 20(3):168–189. doi:10.1159/000334489

    Article  CAS  PubMed  Google Scholar 

  34. Liu JS (2011) Molecular genetics of neuronal migration disorders. Curr Neurol Neurosci Rep 11(2):171–178. doi:10.1007/s11910-010-0176-5

    Article  CAS  PubMed  Google Scholar 

  35. Faux C, Rakic S, Andrews W, Yanagawa Y, Obata K, Parnavelas JG (2010) Differential gene expression in migrating cortical interneurons during mouse forebrain development. J Comp Neurol 518(8):1232–1248. doi:10.1002/cne.22271

    CAS  PubMed  Google Scholar 

  36. Kelsom C, Lu W (2013) Development and specification of GABAergic cortical interneurons. Cell Biosci 3(1):19. doi:10.1186/2045-3701-3-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bagnard D, Vaillant C, Khuth ST, Dufay N, Lohrum M, Puschel AW, Belin MF, Bolz J, Thomasset N (2001) Semaphorin 3A-vascular endothelial growth factor-165 balance mediates migration and apoptosis of neural progenitor cells by the recruitment of shared receptor. J Neurosci 21(10):3332–3341

    CAS  PubMed  Google Scholar 

  38. Senturk A, Pfennig S, Weiss A, Burk K, Acker-Palmer A (2011) Ephrin Bs are essential components of the reelin pathway to regulate neuronal migration. Nature 472(7343):356–360. doi:10.1038/nature09874

    Article  PubMed  CAS  Google Scholar 

  39. Lussier SJ, Stevens HE (2016) Delays in GABAergic interneuron development and behavioral inhibition after prenatal stress. Dev Neurobiol. doi:10.1002/dneu.22376

    PubMed  Google Scholar 

  40. Manent JB, Jorquera I, Mazzucchelli I, Depaulis A, Perucca E, Ben-Ari Y, Represa A (2007) Fetal exposure to GABA-acting antiepileptic drugs generates hippocampal and cortical dysplasias. Epilepsia 48(4):684–693. doi:10.1111/j.1528-1167.2007.01056.x

    Article  CAS  PubMed  Google Scholar 

  41. Naimi TS, Lipscomb LE, Brewer RD, Gilbert BC (2003) Binge drinking in the preconception period and the risk of unintended pregnancy: implications for women and their children. Pediatrics 111(5 Pt 2):1136–1141

    PubMed  Google Scholar 

  42. May PA, Gossage JP (2001) Estimating the prevalence of fetal alcohol syndrome. A summary. Alcohol Res Health 25(3):159–167

    CAS  PubMed  Google Scholar 

  43. Tan CH, Denny CH, Cheal NE, Sniezek JE, Kanny D (2015) Alcohol use and binge drinking among women of childbearing age - United States, 2011–2013. MMWR Morb Mortal Wkly Rep 64(37):1042–1046. doi:10.15585/mmwr.mm6437a3

    Article  PubMed  Google Scholar 

  44. Maier SE, West JR (2001) Drinking patterns and alcohol-related birth defects. Alcohol Res Health 25(3):168–174

    CAS  PubMed  Google Scholar 

  45. Peadon E, Elliott EJ (2010) Distinguishing between attention-deficit hyperactivity and fetal alcohol spectrum disorders in children: clinical guidelines. Neuropsychiatr Dis Treat 6:509–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fryer SL, McGee CL, Matt GE, Riley EP, Mattson SN (2007) Evaluation of psychopathological conditions in children with heavy prenatal alcohol exposure. Pediatrics 119(3):e733–e741. doi:10.1542/peds.2006-1606

    Article  PubMed  Google Scholar 

  47. Knopik VS, Sparrow EP, Madden PA, Bucholz KK, Hudziak JJ, Reich W, Slutske WS, Grant JD, McLaughlin TL, Todorov A, Todd RD, Heath AC (2005) Contributions of parental alcoholism, prenatal substance exposure, and genetic transmission to child ADHD risk: a female twin study. Psychol Med 35(5):625–635

    Article  PubMed  Google Scholar 

  48. Schneider ML, Moore CF, Adkins MM (2011) The effects of prenatal alcohol exposure on behavior: rodent and primate studies. Neuropsychol Rev 21(2):186–203. doi:10.1007/s11065-011-9168-8

    Article  PubMed  PubMed Central  Google Scholar 

  49. Marquardt K, Sigdel R, Caldwell K, Brigman JL (2014) Prenatal ethanol exposure impairs executive function in mice into adulthood. Alcohol Clin Exp Res 38(12):2962–2968. doi:10.1111/acer.12577

    Article  PubMed  PubMed Central  Google Scholar 

  50. Miller MW (1993) Migration of cortical neurons is altered by gestational exposure to ethanol. Alcohol Clin Exp Res 17(2):304–314

    Article  CAS  PubMed  Google Scholar 

  51. Miller MW (1986) Effects of alcohol on the generation and migration of cerebral cortical neurons. Science 233(4770):1308–1311

    Article  CAS  PubMed  Google Scholar 

  52. Miller MW (2006) Effect of prenatal exposure to ethanol on glutamate and GABA immunoreactivity in macaque somatosensory and motor cortices: critical timing of exposure. Neuroscience 138(1):97–107. doi:10.1016/j.neuroscience.2005.10.060

    Article  CAS  PubMed  Google Scholar 

  53. Bailey CD, Brien JF, Reynolds JN (2004) Chronic prenatal ethanol exposure alters the proportion of GABAergic neurons in layers II/III of the adult guinea pig somatosensory cortex. Neurotoxicol Teratol 26(1):59–63. doi:10.1016/j.ntt.2003.08.002

    Article  CAS  PubMed  Google Scholar 

  54. Moore DB, Quintero MA, Ruygrok AC, Walker DW, Heaton MB (1998) Prenatal ethanol exposure reduces parvalbumin-immunoreactive GABAergic neuronal number in the adult rat cingulate cortex. Neurosci Lett 249(1):25–28

    Article  CAS  PubMed  Google Scholar 

  55. Knoflach F, Hernandez MC, Bertrand D (2016) GABAA receptor-mediated neurotransmission: not so simple after all. Biochem Pharmacol 115:10–17. doi:10.1016/j.bcp.2016.03.014

    Article  CAS  PubMed  Google Scholar 

  56. Misgeld U, Bijak M, Jarolimek W (1995) A physiological role for GABAB receptors and the effects of baclofen in the mammalian central nervous system. Prog Neurobiol 46(4):423–462

    Article  CAS  PubMed  Google Scholar 

  57. Wu C, Sun D (2015) GABA receptors in brain development, function, and injury. Metab Brain Dis 30(2):367–379. doi:10.1007/s11011-014-9560-1

    Article  CAS  PubMed  Google Scholar 

  58. Braat S, Kooy RF (2015) The GABAA receptor as a therapeutic target for neurodevelopmental disorders. Neuron 86(5):1119–1130. doi:10.1016/j.neuron.2015.03.042

    Article  CAS  PubMed  Google Scholar 

  59. Manent JB, Demarque M, Jorquera I, Pellegrino C, Ben-Ari Y, Aniksztejn L, Represa A (2005) A noncanonical release of GABA and glutamate modulates neuronal migration. J Neurosci 25(19):4755–4765. doi:10.1523/JNEUROSCI.0553-05.2005

    Article  CAS  PubMed  Google Scholar 

  60. Smith KM, Maragnoli ME, Phull PM, Tran KM, Choubey L, Vaccarino FM (2014) Fgfr1 inactivation in the mouse telencephalon results in impaired maturation of interneurons expressing parvalbumin. PLoS ONE 9(8):e103696. doi:10.1371/journal.pone.0103696

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Cuzon VC, Yeh PW, Cheng Q, Yeh HH (2006) Ambient GABA promotes cortical entry of tangentially migrating cells derived from the medial ganglionic eminence. Cereb Cortex 16(10):1377–1388. doi:10.1093/cercor/bhj084

    Article  PubMed  Google Scholar 

  62. Cuzon Carlson VC, Yeh HH (2011) GABAA receptor subunit profiles of tangentially migrating neurons derived from the medial ganglionic eminence. Cereb Cortex 21(8):1792–1802. doi:10.1093/cercor/bhq247

    Article  PubMed  Google Scholar 

  63. Inada H, Watanabe M, Uchida T, Ishibashi H, Wake H, Nemoto T, Yanagawa Y, Fukuda A, Nabekura J (2011) GABA regulates the multidirectional tangential migration of GABAergic interneurons in living neonatal mice. PLoS ONE 6(12):e27048. doi:10.1371/journal.pone.0027048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Behar TN, Smith SV, Kennedy RT, McKenzie JM, Maric I, Barker JL (2001) GABA(B) receptors mediate motility signals for migrating embryonic cortical cells. Cereb Cortex 11(8):744–753

    Article  CAS  PubMed  Google Scholar 

  65. Behar TN, Schaffner AE, Scott CA, O’Connell C, Barker JL (1998) Differential response of cortical plate and ventricular zone cells to GABA as a migration stimulus. J Neurosci 18(16):6378–6387

    CAS  PubMed  Google Scholar 

  66. Bony G, Szczurkowska J, Tamagno I, Shelly M, Contestabile A, Cancedda L (2013) Non-hyperpolarizing GABAB receptor activation regulates neuronal migration and neurite growth and specification by cAMP/LKB1. Nat Commun 4:1800. doi:10.1038/ncomms2820

    Article  PubMed  CAS  Google Scholar 

  67. Furukawa T, Yamada J, Akita T, Matsushima Y, Yanagawa Y, Fukuda A (2014) Roles of taurine-mediated tonic GABAA receptor activation in the radial migration of neurons in the fetal mouse cerebral cortex. Front Cell Neurosci 8:88. doi:10.3389/fncel.2014.00088

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Heck N, Kilb W, Reiprich P, Kubota H, Furukawa T, Fukuda A, Luhmann HJ (2007) GABA-A receptors regulate neocortical neuronal migration in vitro and in vivo. Cereb Cortex 17(1):138–148. doi:10.1093/cercor/bhj135

    Article  PubMed  Google Scholar 

  69. Rheims S, Represa A, Ben-Ari Y, Zilberter Y (2008) Layer-specific generation and propagation of seizures in slices of developing neocortex: role of excitatory GABAergic synapses. J Neurophysiol 100(2):620–628. doi:10.1152/jn.90403.2008

    Article  PubMed  Google Scholar 

  70. Kumar S, Fleming RL, Morrow AL (2004) Ethanol regulation of gamma-aminobutyric acid A receptors: genomic and nongenomic mechanisms. Pharmacol Ther 101(3):211–226. doi:10.1016/j.pharmthera.2003.12.001

    Article  CAS  PubMed  Google Scholar 

  71. Santhakumar V, Wallner M, Otis TS (2007) Ethanol acts directly on extrasynaptic subtypes of GABAA receptors to increase tonic inhibition. Alcohol 41(3):211–221. doi:10.1016/j.alcohol.2007.04.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lobo IA, Harris RA (2008) GABA(A) receptors and alcohol. Pharmacol Biochem Behav 90(1):90–94. doi:10.1016/j.pbb.2008.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Janigro D, Schwartzkroin PA (1988) Effects of GABA and baclofen on pyramidal cells in the developing rabbit hippocampus: an ‘in vitro’ study. Brain Res 469(1–2):171–184

    Article  CAS  PubMed  Google Scholar 

  74. Lopez-Bendito G, Shigemoto R, Kulik A, Paulsen O, Fairen A, Lujan R (2002) Expression and distribution of metabotropic GABA receptor subtypes GABABR1 and GABABR2 during rat neocortical development. Eur J Neurosci 15(11):1766–1778

    Article  CAS  PubMed  Google Scholar 

  75. Behar TN, Schaffner AE, Scott CA, Greene CL, Barker JL (2000) GABA receptor antagonists modulate postmitotic cell migration in slice cultures of embryonic rat cortex. Cereb Cortex 10(9):899–909

    Article  CAS  PubMed  Google Scholar 

  76. Lopez-Bendito G, Lujan R, Shigemoto R, Ganter P, Paulsen O, Molnar Z (2003) Blockade of GABA(B) receptors alters the tangential migration of cortical neurons. Cereb Cortex 13(9):932–942

    Article  PubMed  Google Scholar 

  77. Crandall JE, McCarthy DM, Araki KY, Sims JR, Ren JQ, Bhide PG (2007) Dopamine receptor activation modulates GABA neuron migration from the basal forebrain to the cerebral cortex. J Neurosci 27(14):3813–3822. doi:10.1523/JNEUROSCI.5124-06.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Trantham-Davidson H, Chandler LJ (2015) Alcohol-induced alterations in dopamine modulation of prefrontal activity. Alcohol 49(8):773–779. doi:10.1016/j.alcohol.2015.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Engel JA, Jerlhag E (2014) Alcohol: mechanisms along the mesolimbic dopamine system. Prog Brain Res 211:201–233. doi:10.1016/B978-0-444-63425-2.00009-X

    Article  CAS  PubMed  Google Scholar 

  80. Fabio MC, Vivas LM, Pautassi RM (2015) Prenatal ethanol exposure alters ethanol-induced Fos immunoreactivity and dopaminergic activity in the mesocorticolimbic pathway of the adolescent brain. Neuroscience 301:221–234. doi:10.1016/j.neuroscience.2015.06.003

    Article  CAS  PubMed  Google Scholar 

  81. Rex EB, Rankin ML, Ariano MA, Sibley DR (2008) Ethanol regulation of D(1) dopamine receptor signaling is mediated by protein kinase C in an isozyme-specific manner. Neuropsychopharmacology 33(12):2900–2911. doi:10.1038/npp.2008.16

    Article  CAS  PubMed  Google Scholar 

  82. Zhou R, Wang S, Zhu X (2012) Prenatal ethanol exposure alters synaptic plasticity in the dorsolateral striatum of rat offspring via changing the reactivity of dopamine receptor. PLoS ONE 7(8):e42443. doi:10.1371/journal.pone.0042443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ungerer M, Knezovich J, Ramsay M (2013) In utero alcohol exposure, epigenetic changes, and their consequences. Alcohol Res 35(1):37–46

    PubMed  PubMed Central  Google Scholar 

  84. Kim P, Choi CS, Park JH, Joo SH, Kim SY, Ko HM, Kim KC, Jeon SJ, Park SH, Han SH, Ryu JH, Cheong JH, Han JY, Ko KN, Shin CY (2014) Chronic exposure to ethanol of male mice before mating produces attention deficit hyperactivity disorder-like phenotype along with epigenetic dysregulation of dopamine transporter expression in mouse offspring. J Neurosci Res 92(5):658–670. doi:10.1002/jnr.23275

    Article  CAS  PubMed  Google Scholar 

  85. Kleiber ML, Diehl EJ, Laufer BI, Mantha K, Chokroborty-Hoque A, Alberry B, Singh SM (2014) Long-term genomic and epigenomic dysregulation as a consequence of prenatal alcohol exposure: a model for fetal alcohol spectrum disorders. Front Genet 5:161. doi:10.3389/fgene.2014.00161

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Kim P, Park JH, Choi CS, Choi I, Joo SH, Kim MK, Kim SY, Kim KC, Park SH, Kwon KJ, Lee J, Han SH, Ryu JH, Cheong JH, Han JY, Ko KN, Shin CY (2013) Effects of ethanol exposure during early pregnancy in hyperactive, inattentive and impulsive behaviors and MeCP2 expression in rodent offspring. Neurochem Res 38(3):620–631. doi:10.1007/s11064-012-0960-5

    Article  CAS  PubMed  Google Scholar 

  87. Perkins A, Lehmann C, Lawrence RC, Kelly SJ (2013) Alcohol exposure during development: impact on the epigenome. Int J Dev Neurosci 31(6):391–397. doi:10.1016/j.ijdevneu.2013.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chen WG, Chang Q, Lin Y, Meissner A, West AE, Griffith EC, Jaenisch R, Greenberg ME (2003) Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science 302(5646):885–889. doi:10.1126/science.1086446

    Article  CAS  PubMed  Google Scholar 

  89. Martinowich K, Hattori D, Wu H, Fouse S, He F, Hu Y, Fan G, Sun YE (2003) DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science 302(5646):890–893. doi:10.1126/science.1090842

    Article  CAS  PubMed  Google Scholar 

  90. Horike S, Cai S, Miyano M, Cheng JF, Kohwi-Shigematsu T (2005) Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome. Nat Genet 37(1):31–40. doi:10.1038/ng1491

    CAS  PubMed  Google Scholar 

  91. Tuncdemir SN, Fishell G, Batista-Brito R (2015) miRNAs are essential for the survival and maturation of cortical interneurons. Cereb Cortex 25(7):1842–1857. doi:10.1093/cercor/bht426

    Article  PubMed  Google Scholar 

  92. Gardiner AS, Gutierrez HL, Luo L, Davies S, Savage DD, Bakhireva LN, Perrone-Bizzozero NI (2016) Alcohol use during pregnancy is associated with specific alterations in microRNA levels in maternal serum. Alcohol Clin Exp Res 40(4):826–837. doi:10.1111/acer.13026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Balaraman S, Lunde ER, Sawant O, Cudd TA, Washburn SE, Miranda RC (2014) Maternal and neonatal plasma microRNA biomarkers for fetal alcohol exposure in an ovine model. Alcohol Clin Exp Res 38(5):1390–1400. doi:10.1111/acer.12378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Guo Y, Chen Y, Carreon S, Qiang M (2012) Chronic intermittent ethanol exposure and its removal induce a different miRNA expression pattern in primary cortical neuronal cultures. Alcohol Clin Exp Res 36(6):1058–1066. doi:10.1111/j.1530-0277.2011.01689.x

    Article  CAS  PubMed  Google Scholar 

  95. Ignacio C, Mooney SM, Middleton FA (2014) Effects of Acute Prenatal Exposure to Ethanol on microRNA Expression are Ameliorated by Social Enrichment. Front Pediatr 2:103. doi:10.3389/fped.2014.00103

    Article  PubMed  PubMed Central  Google Scholar 

  96. Miranda RC, Pietrzykowski AZ, Tang Y, Sathyan P, Mayfield D, Keshavarzian A, Sampson W, Hereld D (2010) MicroRNAs: master regulators of ethanol abuse and toxicity? Alcohol Clin Exp Res 34(4):575–587. doi:10.1111/j.1530-0277.2009.01126.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sathyan P, Golden HB, Miranda RC (2007) Competing interactions between micro-RNAs determine neural progenitor survival and proliferation after ethanol exposure: evidence from an ex vivo model of the fetal cerebral cortical neuroepithelium. J Neurosci 27(32):8546–8557. doi:10.1523/JNEUROSCI.1269-07.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wang LL, Zhang Z, Li Q, Yang R, Pei X, Xu Y, Wang J, Zhou SF, Li Y (2009) Ethanol exposure induces differential microRNA and target gene expression and teratogenic effects which can be suppressed by folic acid supplementation. Hum Reprod 24(3):562–579. doi:10.1093/humrep/den439

    Article  CAS  PubMed  Google Scholar 

  99. Marin O, Rubenstein JL (2003) Cell migration in the forebrain. Annu Rev Neurosci 26:441–483. doi:10.1146/annurev.neuro.26.041002.131058

    Article  CAS  PubMed  Google Scholar 

  100. Metin C, Baudoin JP, Rakic S, Parnavelas JG (2006) Cell and molecular mechanisms involved in the migration of cortical interneurons. Eur J Neurosci 23(4):894–900. doi:10.1111/j.1460-9568.2006.04630.x

    Article  PubMed  Google Scholar 

  101. Powell EM, Mars WM, Levitt P (2001) Hepatocyte growth factor/scatter factor is a motogen for interneurons migrating from the ventral to dorsal telencephalon. Neuron 30(1):79–89

    Article  CAS  PubMed  Google Scholar 

  102. Polleux F, Whitford KL, Dijkhuizen PA, Vitalis T, Ghosh A (2002) Control of cortical interneuron migration by neurotrophins and PI3-kinase signaling. Development 129(13):3147–3160

    CAS  PubMed  Google Scholar 

  103. Canty AJ, Dietze J, Harvey M, Enomoto H, Milbrandt J, Ibanez CF (2009) Regionalized loss of parvalbumin interneurons in the cerebral cortex of mice with deficits in GFRalpha1 signaling. J Neurosci 29(34):10695–10705. doi:10.1523/JNEUROSCI.2658-09.2009

    Article  CAS  PubMed  Google Scholar 

  104. Pozas E, Ibanez CF (2005) GDNF and GFRalpha1 promote differentiation and tangential migration of cortical GABAergic neurons. Neuron 45(5):701–713. doi:10.1016/j.neuron.2005.01.043

    Article  CAS  PubMed  Google Scholar 

  105. Ceccanti M, Mancinelli R, Tirassa P, Laviola G, Rossi S, Romeo M, Fiore M (2012) Early exposure to ethanol or red wine and long-lasting effects in aged mice. A study on nerve growth factor, brain-derived neurotrophic factor, hepatocyte growth factor, and vascular endothelial growth factor. Neurobiol Aging 33(2):359–367. doi:10.1016/j.neurobiolaging.2010.03.005

    Article  CAS  PubMed  Google Scholar 

  106. Tyler CR, Allan AM (2014) Prenatal alcohol exposure alters expression of neurogenesis-related genes in an ex vivo cell culture model. Alcohol 48(5):483–492. doi:10.1016/j.alcohol.2014.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Heaton MB, Mitchell JJ, Paiva M, Walker DW (2000) Ethanol-induced alterations in the expression of neurotrophic factors in the developing rat central nervous system. Brain Res Dev Brain Res 121(1):97–107

    Article  CAS  PubMed  Google Scholar 

  108. Light KE, Brown DP, Newton BW, Belcher SM, Kane CJ (2002) Ethanol-induced alterations of neurotrophin receptor expression on Purkinje cells in the neonatal rat cerebellum. Brain Res 924(1):71–81

    Article  CAS  PubMed  Google Scholar 

  109. Ahmadiantehrani S, Barak S, Ron D (2014) GDNF is a novel ethanol-responsive gene in the VTA: implications for the development and persistence of excessive drinking. Addict Biol 19(4):623–633. doi:10.1111/adb.12028

    Article  CAS  PubMed  Google Scholar 

  110. Sanchez Vega MC, Chong S, Burne TH (2013) Early gestational exposure to moderate concentrations of ethanol alters adult behaviour in C57BL/6 J mice. Behav Brain Res 252:326–333. doi:10.1016/j.bbr.2013.06.003

    Article  CAS  PubMed  Google Scholar 

  111. Diaz MR, Vollmer CC, Zamudio-Bulcock PA, Vollmer W, Blomquist SL, Morton RA, Everett JC, Zurek AA, Yu J, Orser BA, Valenzuela CF (2014) Repeated intermittent alcohol exposure during the third trimester-equivalent increases expression of the GABA(A) receptor delta subunit in cerebellar granule neurons and delays motor development in rats. Neuropharmacology 79:262–274. doi:10.1016/j.neuropharm.2013.11.020

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I would like to express my sincere thanks and appreciation to Dr. Seena Ajit, Drexel University College of Medicine for her continuous support and encouragement. I acknowledge the help of Diana Winters in editing the review. The author is a recipient of the Fulbright Foreign Student Program fellowship funded by the US Department of State, Bureau of Educational and Cultural Affairs and Dean’s Fellowship for Excellence in Collaborative or Themed Research, Graduate School of Biomedical Sciences and Professional Studies, Drexel University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Botros B. Shenoda.

Ethics declarations

Conflict of interest

The author has declared that no conflict of interest exists.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shenoda, B.B. An Overview of the Mechanisms of Abnormal GABAergic Interneuronal Cortical Migration Associated with Prenatal Ethanol Exposure. Neurochem Res 42, 1279–1287 (2017). https://doi.org/10.1007/s11064-016-2169-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-2169-5

Keywords

Navigation