Skip to main content
Log in

The Gut-Brain Axis, BDNF, NMDA and CNS Disorders

  • Review Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Gastro-intestinal (GI) microbiota and the ‘gut-brain axis’ are proving to be increasingly relevant to early brain development and the emergence of psychiatric disorders. This review focuses on the influence of the GI tract on Brain-Derived Neurotrophic Factor (BDNF) and its relationship with receptors for N-methyl-d-aspartate (NMDAR), as these are believed to be involved in synaptic plasticity and cognitive function. NMDAR may be associated with the development of schizophrenia and a range of other psychopathologies including neurodegenerative disorders, depression and dementias. An analysis of the routes and mechanisms by which the GI microbiota contribute to the pathophysiology of BDNF-induced NMDAR dysfunction could yield new insights relevant to developing novel therapeutics for schizophrenia and related disorders. In the absence of GI microbes, central BDNF levels are reduced and this inhibits the maintenance of NMDAR production. A reduction of NMDAR input onto GABA inhibitory interneurons causes disinhibition of glutamatergic output which disrupts the central signal-to-noise ratio and leads to aberrant synaptic behaviour and cognitive deficits. Gut microbiota can modulate BDNF function in the CNS, via changes in neurotransmitter function by affecting modulatory mechanisms such as the kynurenine pathway, or by changes in the availability and actions of short chain fatty acids (SCFAs) in the brain. Interrupting these cycles by inducing changes in the gut microbiota using probiotics, prebiotics or antimicrobial drugs has been found promising as a preventative or therapeutic measure to counteract behavioural deficits and these may be useful to supplement the actions of drugs in the treatment of CNS disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

BDNF:

Brain-derived neurotrophic factor

CNS:

Central nervous system

FOS:

Fructo-oligosaccharide

GABA:

Gamma-aminobutyric acid

GF:

Germ-free mice

GI:

Gastrointestinal

GOS:

Galacto-oligosaccharide

IL-10:

Interleukin 10

IL-1β:

Interleukin 1β

IL-6:

Interleukin 6

LTD:

Long term depression

LTP:

Long term potentiation

NMDA:

N-Methyl-d-aspartate

NMDAR:

N-Methyl-d-aspartate receptor

SCFA:

Short-chain fatty acid

SPF:

Specific pathogen-free

References

  1. Rhee SH, Pothoulakis C, Mayer EA (2009) Principles and clinical implications of the brain–gut–enteric microbiota axis. Nat Rev Gastroenterol Hepatol 6:306–314

    Article  CAS  PubMed  Google Scholar 

  2. Lyte M (2013) Microbial endocrinology in the microbiome-gut-brain axis: how bacterial production and utilization of neurochemicals influence behavior. PLoS Pathog 9:AR1003726

    Article  CAS  Google Scholar 

  3. Lyte M (2014) Microbial endocrinology: host-microbiota neuroendocrine interactions influencing brain and behavior. Gut Microbes 5:381–389

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, Yu X, Kubo C, Koga Y (2004) Postnatal microbial colonization programs the hypothalamic–pituitary–adrenal system for stress response in mice. J Physiol (Lond) 558:263–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bailey MT, Coe CL (1999) Maternal separation disrupts the integrity of the intestinal microflora in infant rhesus monkeys. Dev Psychobiol 35:146–155

    Article  CAS  PubMed  Google Scholar 

  6. Francis D, Diorio J, Liu D, Meaney MJ (1999) Nongenomic transmission across generations of maternal behavior and stress responses in the rat. Science 286:1155–1158

    Article  CAS  PubMed  Google Scholar 

  7. Bercik P, Collins SM, Verdu EF (2012) Microbes and the gut–brain axis. Neurogastroenterol Motil 24:405–413

    Article  CAS  PubMed  Google Scholar 

  8. Sekirov I, Russell SL, Antunes LC, Finlay BB (2010) Gut microbiota in health and disease. Physiol Rev 90:859–904

    Article  CAS  PubMed  Google Scholar 

  9. Collins SM, Bercik P (2009) The relationship between intestinal microbiota and the central nervous system in normal gastrointestinal function and disease. Gastroenterology 136:2003–2014

    Article  PubMed  Google Scholar 

  10. Santos J, Yang PC, Soderholm JD, Benjamin M, Perdue MH (2001) Role of mast cells in chronic stress induced colonic epithelial barrier dysfunction in the rat. Gut 48:630–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Soderholm JD, Perdue MH (2001) Stress and gastrointestinal tract. II. Stress and intestinal barrier function. Am J Physiol Gastrointest Liver Physiol 280:G7–G13

    CAS  PubMed  Google Scholar 

  12. O’Mahony SM, Marchesi JR, Scully P, Codling C, Ceolho AM, Dinan TG (2009) Early life stress alters behavior, immunity, and microbiota in rats: implications for irritable bowel syndrome and psychiatric illnesses. Biol Psychiatry 65:263–267

    Article  PubMed  Google Scholar 

  13. Bailey MT, Dowd SE, Galley JD, Hufnagle AR, Allen RG, Lyte M (2011) Exposure to a social stressor alters the structure of the intestinal microbiota: implications for stressor-induced immunomodulation. Brain Behav Immun 25:397–407

    Article  CAS  PubMed  Google Scholar 

  14. Turner JR (2009) Intestinal mucosal barrier function in health and disease. Nat Rev Immunol 9:799–809

    Article  CAS  PubMed  Google Scholar 

  15. Rodino-Janeiro BK, Alonso-Cotoner C, Pigrau M, Lobo B, Vicario M, Santos J (2015) Role of corticotrophin-releasing factor in gastrointestinal permeability. J Neurogastroenterol Motil 21:33–50

    Article  PubMed  PubMed Central  Google Scholar 

  16. Steffen EK, Berg RD, Deitch EA (1988) Comparison of translocation rates of various indigenous bacteria from the gastrointestinal tract to the mesenteric lymph node. J Infect Dis 157:1032–1038

    Article  CAS  PubMed  Google Scholar 

  17. Maes M, Kubera M, Leunis JC, Berk M (2012) Increased IgA and IgM responses against gut commensals in chronic depression: further evidence for increased bacterial translocation or leaky gut. Affective Disord 141:55–62

    Article  CAS  Google Scholar 

  18. O’Mahony SM, Hyland NP, Dinan TG, Cryan JF (2011) Maternal separation as a model of brain–gut axis dysfunction. Psychopharmacology (Berl) 214:71–88

    Article  CAS  Google Scholar 

  19. Tannock GW, Savage DC (1974) Influences of dietary and environmental stress on microbial populations in the murine gastrointestinal tract. Infect Immun 9:591–598

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Douglas-Escobar M, Elliott E, Neu J (2013) Effect of intestinal microbial ecology on the developing brain. J Amer Med Assoc (Paediat) 164:374–379

    Google Scholar 

  21. Zhou L, Foster JA (2015) Psychobiotics and the gut-brain axis: in the pursuit of happiness. Neuropsychiatr Dis Treat 11:715–723.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Desbonnet L, Clarke G, Traplin A, O’Sullivan O, Crispie F, Moloney RD, Cotter PD, Dinan TG, Cryan JF (2015) Gut microbiota depletion from early adolescence in mice: implications for brain and behaviour. Brain Behav Immun 48:165–173

    Article  CAS  PubMed  Google Scholar 

  23. Jorgensen BP, Hansen JT, Krych L, Larsen C, Klein AB, Nielsen DS, Josefsen K, Hansen AK, Sorensen DB (2014) A Possible link between food and mood: dietary impact on gut microbiota and behavior in BALB/c mice. PLoS One 9:AR e103398

    Article  CAS  Google Scholar 

  24. Crumeyrolle-Arias M, Jaglin M, Bruneau A, Vancassel S, Cardona A, Dauge V, Naudon L, Rabot S (2014) Absence of the gut microbiota enhances anxiety-like behavior and neuroendocrine response to acute stress in rats. Psychoneuroendocrinology 42:207–217

    Article  CAS  PubMed  Google Scholar 

  25. Heijtz RD, Wang S, Anuar F, Qian Y, Björkholm B, Samuelsson A, Hibberd ML, Forssberg H, Pettersson S (2011) Normal gut microbiota modulates brain development and behaviour. Proc Nat Acad Sci USA 108:3047–3052

    Article  CAS  PubMed Central  Google Scholar 

  26. Hooper LV, Gordon JI (2001) Commensal host-bacterial relationships in the gut. Science 292:1115–1118

    Article  CAS  PubMed  Google Scholar 

  27. Clarke G, Grenham S, Scully P, Fitzgerald P, Moloney RD, Shanahan F, Dinan TG, Cryan JF (2013) The microbiome–gut–brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry 18:666–673

    Article  CAS  PubMed  Google Scholar 

  28. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638

    Article  PubMed  PubMed Central  Google Scholar 

  29. Stone TW (1993) The neuropharmacology of quinolinic acid and kynurenic acids. Pharmacol Revs 45:309–379

    CAS  Google Scholar 

  30. Stone TW, Darlington LG (2002) Endogenous kynurenines as targets for drug discovery and development. Nat Rev Drug Disc 1:609–620

    Article  CAS  Google Scholar 

  31. Stone TW, Darlington LG (2013) The kynurenine pathway as a therapeutic target in cognitive and neurodegenerative disorders. Brit J Pharmacol 169:1211–1227

    Article  CAS  Google Scholar 

  32. Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI (2005) Host–bacterial mutualism in the human intestine. Science 307:1915–1920

    Article  PubMed  CAS  Google Scholar 

  33. Nakazawa H, Enei H, Okumura S, Yamada H (1972) Bacterial synthes of l-tryptophan and its analogs 0.1. Synthesis of l-tryptophan from pyruvate, ammonia and indole. Agric Biol Chem 36:2523–2528

    Article  CAS  Google Scholar 

  34. McEwen B (1999) Development of the cerebral cortex: XIII. Stress and brain development: II. J Amer Child Adolescent Psychiatry 38:101–103

    Article  CAS  Google Scholar 

  35. McEwen BS (1992) Steroid-hormones-effect on brain-development and function. Hormone Res 37:1–10.

    Article  CAS  PubMed  Google Scholar 

  36. Juster R-P, Bizik G, Picard M, Arsenault-Lapierre G, Sindi S, Trepanier L, Marin MF, Wan N, Sekerovic Z, Lord C, Fiocco AJ, Plusquellec P, McEwen BS, Lupien SJ (2011) A transdisciplinary perspective of chronic stress in relation to psychopathology throughout life span development. Dev Psychopathol 23:725–776.

    Article  PubMed  Google Scholar 

  37. Hornig M, Weissenbock H, Horscroft N, Lipkin WI (1999) An infection-based model of neurodevelopmental damage. Proc Nat Acad Sci USA 96:12102–12107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Brown AS (2006) Prenatal infection as a risk factor in schizophrenia. Schizophren Bull 32:200–202

    Article  Google Scholar 

  39. Brown AS (2011) The environment and susceptibility to schizophrenia. Prog Neurobiol 93:23–58

    Article  CAS  PubMed  Google Scholar 

  40. Meyer U, Feldon J (2010) Epidemiology-driven neurodevelopmental animal models of schizophrenia. Prog Neurobiol 90:285–326

    Article  PubMed  Google Scholar 

  41. Borre YE, O’Keefe GW, Clarke G, Stanton C, Dinan TG, Cryan JF (2014) Microbiota and neurodevelopmental windows: implications for brain disorders. Trends Molec Med 20:509–518

    Article  Google Scholar 

  42. Romano-Keeler J, Weitkamp JH (2014) Maternal influences on fetal microbial colonization and immune development. Pediat Res 77:189–195

    Article  PubMed  PubMed Central  Google Scholar 

  43. Grenham S, Clarke G, Cryan JF, Dinan TG (2011) Brain-gut-microbe communication in health and disease. Front Physiol 2:1–15

    Article  Google Scholar 

  44. Ericsson AC, Akter S, Hanson MM, Busi SB, Parker TW, Schehr RJ, Hankins M, Ahner CE, Davis JW, Franklin CL, Amos-Landgraf JM, Bryda EC (2015) Differential susceptibility to colorectal cancer due to naturally occurring gut microbiota. Oncotarget 6:33689–33704

    PubMed  PubMed Central  Google Scholar 

  45. Biasucci G, Rubini M, Riboni S, Morelli L, Bessi E, Retetangos C (2010) Mode of delivery affects the bacterial community in the newborn gut. Early Human Dev 86:513–515

    Article  Google Scholar 

  46. Wassenaar, Panigrahi P (2014) Is a foetus developing in a sterile environment? Letts Appl Microbiol 59:572–579

    Article  CAS  Google Scholar 

  47. Satokari R, Gronroos T, Laitinen K, Salminen S, Isolauri E (2009) Bifidobacterium and Lactobacillus DNA in the human placenta. Letts Appl Microbiol 48:8–12

    Article  CAS  Google Scholar 

  48. Dinan TG, Stilling RM, Stanton C, Cryan JF (2015) Collective unconscious: how gut microbes shape human behaviour. J Psychiatr Res 63:1–9

    Article  PubMed  Google Scholar 

  49. Collado MC, Rautava S, Aakko J, Isolauri E, Salminen S (2016) Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci Repts 6:art23129

    Article  CAS  Google Scholar 

  50. Farshim P, Walton G, Chakrabarti B, Givens I, Saddy D, Kitchen I, Swann JR, Bailey A (2016) Maternal weaning modulates emotional behavior and regulates the gut-brain axis. Sci Repts 6:art21958

    Article  CAS  Google Scholar 

  51. Paul HA, Bomhof MR, Vogel HJ, Reimer RA (2016) Diet-induced changes in maternal gut microbiota and metabolomic profiles influence programming of offspring obesity risk in rats. Sci Repts 6:art20683

    Article  CAS  Google Scholar 

  52. Tochitani S, Ikeno T, Ito T, Sakurai A, Yamauchi T, Matsuzaki H (2016) Administration of non-absorbable antibiotics to pregnant mice to perturb the maternal gut microbiota is associated with alterations in offspring behaviour. PLoS One 11:ARe0138293

    Article  CAS  Google Scholar 

  53. Goldsmith F, O’Sullivan A, Smilowitz JT, Freeman SL (2015) Lactation and intestinal microbiota: how early diet shapes the infant gut. J Mamm Gland Biol Neoplasia 20:149–158

    Article  Google Scholar 

  54. Snyder MA, Gao WJ (2013) NMDA hypofunction as a convergence point for progression and symptoms of schizophrenia. Front Cell Neurosci 7:1–12

    Article  CAS  Google Scholar 

  55. Wenzel A, Fritschy JM, Mohler H, Benke D (1997) NMDA receptor heterogeneity during postnatal development of the rat brain: Differential expression of the NR2A, NR2B, and NR2C subunit proteins. J Neurochem 68:469–478

    Article  CAS  PubMed  Google Scholar 

  56. Contestabile A (2000) Roles of NMDA receptor activity and nitric oxide production in brain development. Brain Res Rev 32:476–509

    Article  CAS  PubMed  Google Scholar 

  57. Adesnik H, Li G, During MJ, Pleasure SJ, Nicoll RA (2008) NMDA receptors inhibit synapse unsilencing during brain development. Proc Nat Acad Sci USA 105:5597–5602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. du Bois, Huang X-F (2007) Early brain development disruption from NMDA receptor hypofunction: relevance to schizophrenia. Brain Res Rev 53:260–270

    Article  PubMed  CAS  Google Scholar 

  59. Gulati AS, Shanahan MT, Arthur JC, Grossniklaus E, Furstenberg RJ, Kreuk L, Henning SJ, Jobin C, Sartor RB (2012) Mouse background strain profoundly influences Paneth cell function and intestinal microbial composition. PLoS One 7:ARe32403

    Article  CAS  Google Scholar 

  60. Benson AK, Kelly SA, Legge R, Ma FR, Low SJ, Kim J, Zhang M, Oh PL, Nehrenberg D, Hua KJ, Kachman SD, Moriyama EN, Walter J, Peterson DA, Pomp D (2010) Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proc Natl Acad Sci USA 107:18933–18938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Esworthy RS, Smith DD, Chu FF (2010) A strong impact of genetic background on gut microflora in mice. Int J Inflamm 2010:986046. doi:10.4061/2010/986046

    Article  CAS  Google Scholar 

  62. Cryan JF, Dinan TG (2012) Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 13:701–712

    Article  CAS  PubMed  Google Scholar 

  63. Bercik P, Verdu EF, Foster JA, Macri J, Potter M, Huang XX, Malinowski P, Jackson W, Blennerhassett P, Neufeld KA, Lu J, Khan WI, Corthesy-Theulaz I, Cherbut C, Bergonzelli GE, Collins SM (2010) Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry in mice. Gastroenterology 139:2102–2112

    Article  CAS  PubMed  Google Scholar 

  64. Lyte M, Li W, Opitz N, Gaykema R, Goehler LE (2006) Induction of anxiety-like behavior in mice during the initial stages of infection with the agent of murine colonic hyperplasia Citrobacter rodentium. Physiol Behav 89:350–357

    Article  CAS  PubMed  Google Scholar 

  65. Claesson MJ, Jeffery IB, Conde S, Power SE, O’Connor EM, Cusack S, Harris HMB, Coakley M, Lakshminarayanan B, O’Sullivan O, Fitzgerald GF, Deane J, O’Connor M, Harnedy N, O’Connor K, O’Mahony D, van Sinderen D, Wallace M, Brennan L, Stanton C, Marchesi JR, Fitzgerald AP, Shanahan F, Hill C, Ross RP, O’Toole PW (2012) Gut microbiota composition correlates with diet and health in the elderly. Nature 488:178–184

    CAS  PubMed  Google Scholar 

  66. Neufeld KM, Kang N, Bienenstock J, Foster JA (2010) Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol Motil 23:255–264

    Article  PubMed  Google Scholar 

  67. de Theije CG, Wu JB, da Silva SL, Kamphuis PJ, Garssen J, Korte SM, Kraneveld AD (2011) Pathways underlying the gut–to–brain connection in autism spectrum disorders as future targets for disease management. Eur J Pharmacol 668:S70–S80

    Article  PubMed  CAS  Google Scholar 

  68. Parracho HM, Bingham MO, Gibson GR, McCartney AL (2005) Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children. J Med Microbiol 54:987–991

    Article  PubMed  Google Scholar 

  69. MacFabe DF, Cain NE, Boon F, Ossenkopp KP, Cain DP (2011) Effects of the enteric bacterial metabolic product propionic acid on object-directed behavior, social behavior, cognition, and neuroinflammation in adolescent rats: relevance to autism spectrum disorder. Behav Brain Res 217:47–54

    Article  CAS  PubMed  Google Scholar 

  70. Frohlich EE, Farzi A, Mayerhofer R, Reichmann F, Jacan A, Wagner B, Zinser E, Bordag N, Magnes C, Frohlich E, Kashofer K, Gorkiewicz G, Holzer P (2016) Cognitive impairment by antibiotic-induced gut dysbiosis: analysis of gut microbiota-brain communication. Brain Behav Immun 56:140–155

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Garakani A, Win T, Virk S, Gupta S, Kaplan D, Masand PS (2003) Comorbidity of irritable bowel syndrome in psychiatric patients: a review. Am J Ther 10:61–67

    Article  PubMed  Google Scholar 

  72. Fuller-Thomson E, Lateef R, Sulman J (2015) Robust association between inflammatory bowel disease and generalized anxiety disorder: findings from a nationally representative Canadian study. Inflamm Bowel Dis 21:2341–2348

    Article  PubMed  Google Scholar 

  73. Mikocka-Walus A, Knowles SR, Keefer L, Graff L (2016) Controversies revisited: a systematic review of the comorbidity of depression and anxiety with inflammatory bowel diseases. Inflamm Bowel Dis 22:752–762

    Article  PubMed  Google Scholar 

  74. Desbonnet L, Garrett L, Clarke G, Kiely B, Cryan JF, Dinan TG (2010) Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression. Neuroscience 170:1179–1188

    Article  CAS  PubMed  Google Scholar 

  75. Adams JB, Johansen LJ, Powell LD, Quig D, Rubin RA (2011) Gastrointestinal flora and gastrointestinal status in children with autism—comparisons to typical children and correlation with autism severity. BMC Gastroenterol 11:1–13

    Article  Google Scholar 

  76. Finegold SM, Dowd SE, Gontcharova V, Liu C, Henley KE, Wolcott RD, Youn E, Summanin PH, Doreen G, Dixon D, Liu M, Molitoris DR, Green JA (2010) Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe 16:444–453

    Article  CAS  PubMed  Google Scholar 

  77. Singh S, Kumar A, Agarwal S, Phadke SR, Jaiswal Y (2014) Genetic insight of schizophrenia: past and future perspectives. Gene 535:97–100

    Article  CAS  PubMed  Google Scholar 

  78. Nieto R, Kukuljan M, Silva H (2013) BDNF and schizophrenia: from neurodevelopment to neuronal plasticity, learning, and memory. Front Psychiatry 4:1–11

    Article  CAS  Google Scholar 

  79. Dinan TG, Borre YE, Cryan JF (2014) Genomics of schizophrenia: time to consider the gut microbiome? Mol Psychiatry 19:1252–1257

    Article  CAS  PubMed  Google Scholar 

  80. Wei J, Hemmings GP (2005) Gene, gut and schizophrenia: the meeting point for the gene-environment interaction in developing schizophrenia. Med Hypoth 64:547–552

    Article  CAS  Google Scholar 

  81. Nemani K, Ghomi RH, McCormick B, Fan X (2015) Schizophrenia and the gut-brain axis. Prog Neuro Psychopharmacol Biol Psychiatry 56:155–160

    Article  CAS  Google Scholar 

  82. Wu JQ, Chen DC, Tan YL, Tan SP, Xiu MH, Wang ZR, De Yang F, Soares JC, Zhang XY (2016) Altered interleukin-18 levels are associated with cognitive impairment in chronic schizophrenia. J Psychiatr Res 76:9–15

    Article  PubMed  Google Scholar 

  83. Tan YL, Li YL, Tan SP, Wang ZR, Yang FD, Cao B, Zunta-Soares GB, Soares JC, Zhang XY (2015) Increased interleukin-2 serum levels were associated with psycho-pathological symptoms and cognitive deficits in treatment-resistant schizophrenia. Schizophrenia Res 169:16–21

    Article  Google Scholar 

  84. Asevedo E, Rizzo LB, Gadelha A, Mansur RB, Ota VK, Berberian AA, Scarpato BS, Teixeira AL, Bressan RA, Brietzke E (2014) Peripheral interleukin-2 level is associated with negative symptoms and cognitive performance in schizophrenia. Physiol Behav 129:194–198

    Article  CAS  PubMed  Google Scholar 

  85. Hope S, Ueland T, Steen NE, Dieset I, Lorentzen S, Berg AO, Agartz I, Aukrust P, Andreassen OA (2013) Interleukin 1 receptor antagonist and soluble tumor necrosis factor receptor 1 are associated with general severity and psychotic symptoms in schizophrenia and bipolar disorder. Schizophrenia Res 145:36–42

    Article  Google Scholar 

  86. Sasayama D, Hattori K, Wakabayashi C, Teraishi T, Hori H, Ota M, Yoshida S, Arima K, Higuchi T, Amano N, Kunugi H (2013) Increased cerebrospinal fluid interleukin-6 levels in patients with schizophrenia and those with major depressive disorder. J Psychiatr Res 47:401–406

    Article  PubMed  Google Scholar 

  87. Stefansson H, Ophoff RA, Steinberg S, Andreassen OA, Cichon S, Rujescu D, Werge T, Pietilainen OPH, Mors O, Mortensen PB (2009) Common variants conferring risk of schizophrenia. Nature 460:744–747

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Pedrini M, Massuda R, Fries GR, de Bittencourt PMA, Schnorr CE, Moreira JCF, Teixeira AL, Lobato MIR, Walz JC, Belmonte-de-Abreu PS, Kauer-Sant’Anna M, Kapczinski F, Gama CS (2012) Similarities in oxidative stress markers and inflammatory cytokines in patients with overt schizophrenia at early and late stages of chronicity. J Psychiatr Res 46:819–824

    Article  PubMed  Google Scholar 

  89. Song X, Fan X, Song X, Zhang J, Zhang W, Li X, Gao J, Harrington A, Ziedonis D, Lu L (2013) Elevated levels of adiponectin and other cytokines in drug naive first episode schizophrenia patients with normal weight. Schizophrenia Res 150:269–273

    Article  Google Scholar 

  90. Fan X, Liu EY, Freudenreich O, Park JH, Liu D, Wang J, Yi Z, Goff D, Henderson DC (2010) Higher white blood cell counts are associated with an increased risk for metabolic syndrome and more severe psychopathology in non-diabetic patients with schizophrenia. Schizophrenia Res 118:211–217

    Article  Google Scholar 

  91. Davey KJ, O’Mahony SM, Schellekens H, O’Sullivan O, Bienenstock J, Cotter PD, Dinan TG, Cryan JF (2012) Gender-dependent consequences of chronic olanzapine in the rat: effects on body weight, inflammatory, metabolic and microbiota parameters. Psychopharmacology (Berl) 221:155–169

    Article  CAS  Google Scholar 

  92. Goto Y, Yang CR, Otani S (2010) Functional and dysfunctional synaptic plasticity in prefrontal cortex: roles in psychiatric disorders. Biolo Psychiatry 67:199–207

    Article  Google Scholar 

  93. Stone TW, Perkins MN (1981) Quinolinic acid: a potent endogenous excitant at amino acid receptors in CNS. Eur J Pharmacol 72:411–412

    Article  CAS  PubMed  Google Scholar 

  94. Perkins MN, Stone TW (1982) An iontophoretic investigation of the action of convulsant kynurenines and their interaction with the endogenous excitant quinolinic acid. Brain Res 247:184–187

    Article  CAS  PubMed  Google Scholar 

  95. Forrest CM, Khalil OS, Pisar M, Darlington LG, Stone TW (2013) Prenatal inhibition of the tryptophan-kynurenine pathway alters synaptic plasticity and protein expression in the rat hippocampus. Brain Res 1504:1–15

    Article  CAS  PubMed  Google Scholar 

  96. Forrest CM, Khalil OS, Pisar M, McNair K, Kornisiuk E, Snitcofsky M, Gonzalez M, Jerusalinsky D, Darlington LG, Stone TW (2013) Changes in synaptic transmission and protein expression in the brains of adult offspring after prenatal inhibition of the kynurenine pathway. Neuroscience 254:241–259

    Article  CAS  PubMed  Google Scholar 

  97. Khalil OS, Pisar M, Forrest CM, Vincenten MCJ, Darlington LG, Stone TW (2014) Prenatal inhibition of the kynurenine pathway leads to structural changes in the hippocampus of adult rat offspring. Europ. J Neurosci 39:1558–1571

    Google Scholar 

  98. Pisar M, Forrest CM, Khalil OS, McNair K, Vincenten MCJ, Qasem S, Darlington LG, Stone TW (2014) Modified neocortical and cerebellar protein expression and morphology following prenatal inhibition of the kynurenine pathway. Brain Res 1576:1–17

    Article  CAS  PubMed  Google Scholar 

  99. Hilmas C, Pereira EFR, Alkondon M, Rassoulpour A, Schwarcz R, Albuquerque EX (2001) The brain metabolites kynurenic acid inhibits α7-nicotinic receptor activity and increases non-α7 nicotinic receptor expression. J Neurosci 21:7463–7473

    CAS  PubMed  Google Scholar 

  100. Mok MHS, Fricker AC, Weil A, Neurochem KJ (2009) Electrophysiological characterisation of the actions of kynurenic acid at ligand-gated ion channels. Neuropharmacology 57:242–249

    Article  CAS  PubMed  Google Scholar 

  101. Dobelis P, Staley KJ, Cooper DC (2012). Lack of modulation of nicotinic acetylcholine alpha-7 receptor currents by kynurenic acid in adult hippocampal interneurons. PLoS One 7:ARe41108

    Article  CAS  Google Scholar 

  102. Arnaiz-Cot JJ, Gonzalez JC, Sobrado M, Baldelli P, Carbone E, Gandia L, Garcia AG, Hernandez-Guijo JM (2008) Allosteric modulation of alpha7nicotinic receptors selectively depolarizes hippocampal interneurons, enhancing spontaneous GABAergic transmission. Eur J Neurosci 27:1097–1110

    Article  CAS  PubMed  Google Scholar 

  103. Cohen SM, Tsien RW, Goff DC, Halassa MM (2015) The impact of NMDA receptor hypofunction on GABAergic neurons in the pathophysiology of schizophrenia. Schizophren Res 167:98–107

    Article  Google Scholar 

  104. Hardingham GE, Fukunaga Y, Bading H (2002) Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CRED shut-off and cell death pathways. Nat Neurosci 5:405–414

    CAS  PubMed  Google Scholar 

  105. Tsien JZ, Huerta PT, Tonegawa S (1996) The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell 87:1327–1338

    Article  CAS  PubMed  Google Scholar 

  106. Moreau AW, Kullmann DM (2013) NMDA receptor-dependent function and plasticity in inhibitory circuits. Neuropharmacology 74:23–31

    Article  CAS  PubMed  Google Scholar 

  107. Kegeles LS, Abi-Dargham A, Zea-Ponce Y, Rodenhiser-Hill J, Mann JJ, Van Heertum RL, Cooper TB, Carlsson A, Laruelle M (2000) Modulation of amphetamine-induced striatal dopamine release by ketamine in humans: implications for schizophrenia. Biol Psychiatry 48:627–640

    Article  CAS  PubMed  Google Scholar 

  108. Carlsson M, Carlsson A (1990) Schizophrenia: a subcortical neurotransmitter imbalance syndrome? Schizophren Bull 16:425–432

    Article  CAS  Google Scholar 

  109. Gaspar PA, Bustamante ML, Silva H, Aboitiz F (2009) Molecular mechanisms underlying glutamatergic dysfunction in schizophrenia: therapeutic implications. J Neurochem 111:891–900

    Article  CAS  PubMed  Google Scholar 

  110. Mohn AR, Gainetdinov RR, Caron MG, Koller BH (1999) Mice with reduced nmda receptor expression display behaviors related to schizophrenia. Cell 98:427–436

    Article  CAS  PubMed  Google Scholar 

  111. Luby ED, Cohen BD, Rosenbaum G, Gottlieb JS, Kelley R (1959) Study of a new schizophrenomimetic drug-sernyl. AMA Arch Neurol Psychiatry 81:113–119

    Article  Google Scholar 

  112. Jorgensen BP, Krych L, Penderson TB, Plath N, Redrobe JP, Hansen AK, Nielsen DS, Pendersen CS, Larsen C, Sørensen DB (2015) Investigating the long-term effect of subchronic phencyclidine-treatment on novel object recognition and the association between the gut microbiota and behavior in the animal model of schizophrenia. Physiol Behav 141:32–39

    Article  CAS  Google Scholar 

  113. Shiraishi H, Ito M, Go TS, Mikawa H (1993) High-doses of penicillin decreases [H-3] flunitrazepam binding-sites in rat neuron primary culture. Brain and Dev 15:356–361

    Article  CAS  Google Scholar 

  114. Feng HJ, Botzolakis EJ, Macdonald RL (2009) Context-dependent modulation of alpha beta gamma and alpha beta delta GABA(A) receptors by penicillin: implications for phasic and tonic inhibition. Neuropharmacology 56:161–173

    Article  CAS  PubMed  Google Scholar 

  115. Lindquist CEL, Dalziel JE, Cromer BA, Birnir B (2004) Penicillin blocks human alpha(1)beta(1) and alpha(1)beta(1)gamma(2S)GABA(A) channels that open spontaneously. Eur J Pharmacol 496:23–32

    Article  CAS  PubMed  Google Scholar 

  116. Macdonald RL, Barker JL (1977) Pentylenetetrazol and penicillin are selective antagonists of GABA-mediated post-synaptic inhibition in cultured mammalian neurons. Nature 267:720–721

    Article  CAS  PubMed  Google Scholar 

  117. Coyle JT (2012) NMDA Receptor and schizophrenia: a brief history. Schizophren Bull 38:920–926

    Article  Google Scholar 

  118. Levin R, Dor-Abarbanel AE, Edelman S, Durrant AR, Hashimoto K, Javitt DC, Heresco-Levy U (2015) Behavioural and cognitive effects of the N-methyl-d-spartate receptor co-agonist d-serine in healthy humans: initial findings. J Psychiatr Res 61:188–195

    Article  PubMed  Google Scholar 

  119. Mothet J, Parent AT, Wolosker H, Brady RO, Linden DJ, Ferris CD, Rogawski MA, Snyder SH (2000). d-serine is an endogenous ligand for the glycine site of the N-methyl-d-aspartate receptor. Proc Nat Acad Sci USA 97:4926–4931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Machado-Vieira R, Salvadore G, DiazGranados N, Zarate CA (2009) Ketamine and the next generation of antidepressants with a rapid onset of action. Pharmacol Ther 123:143–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Coyle CM, Laws KR (2015) The use of ketamine as an antidepressant: a systematic review and meta-analysis. Human Psychopharmacol Clin Exp 30:152–163

    Article  CAS  Google Scholar 

  122. Drewniany E, Han J, Hancock C, Jones RL, Lim J, Gorgani NN, Sperry JK, Yu HJ, Raffa RB (2015) Rapid-onset antidepressant action of ketamine: potential revolution in understanding and future pharmacologic treatment of depression. J Clin Pharm Ther 40:125–130

    Article  CAS  PubMed  Google Scholar 

  123. Li CF, Chen XM, Chen SM, Mu RH, Liu BB, Luo L, Liu XL, Geng D, Liu Q, Yi LT (2016) Activation of hippocampal BDNF signaling is involved in the antidepressant-like effect of the NMDA receptor antagonist 7-chlorokynurenic acid. Brain Res 1630:73–82

    Article  CAS  PubMed  Google Scholar 

  124. Leal G, Afonso PM, Salazar IL, Duarte CB (2015) Regulation of hippocampal synaptic plasticity by BDNF. Brain Res 1621:82–101

    Article  CAS  PubMed  Google Scholar 

  125. Yang J, Siao CJ, Nagappan G, Marinic T, Jing D, McGrath K, Chen ZY, Mark W, Tessarollo L, Lee FS, Lu B, Hempstead L (2009) Neuronal release of pro-BDNF. Nat Neurosci 12:113–115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Matsumoto T, Rauskolb S, Polack M, Klose J, Kolbeck R, Korte M, Barde YA (2008) Biosynthesis and processing of endogenous BDNF: CNS neurons store and secrete BDNF, not pro-BDNF. Nat Neurosci 11:131–133

    Article  CAS  PubMed  Google Scholar 

  127. Nagappan G, Zaitsev E, Senatorov VV, Yang J, Hempstead BL, Lu B (2009). Control of extracellular cleavage of ProBDNF by high frequency neuronal activity. Proc Nat Acad Sci USA 106:1262–1272

    Article  Google Scholar 

  128. Patterson SL, Grover LM, Schwartzkroin PA, Bothwell M (1992) Neurotrophin expression in rat hippocampal slices: a stimulus paradigm inducing LTP in CA1 evokes increases in BDNF and NT-3 mRNAs. Neuron 9:1081–1088

    Article  CAS  PubMed  Google Scholar 

  129. Aicardi G, Argilli E, Cappello S, Santi S, Riccio M, Thoenen H, Canossa M (2004) Induction of long-term potentiation and depression is reflected by corresponding changes in secretion of endogenous brain-derived neurotrophic factor. Proc Nat Acad Sci USA 101:15788–15792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Björkholm C, Monteggia LM (2016) BDNF—a key transducer of antidepressant effects. Neuropharmacology 102:72–79

    Article  PubMed  CAS  Google Scholar 

  131. Heldt SA, Stanek L, Chhatwal JP, Ressler KJ (2007) Hippocampus-specific deletion of BDNF in adult mice impairs spatial memory and extinction of aversive memories. Mol Psychiatry 12:656–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Adachi N, Numakawa T, Richards M, Nakajima S, Kunugi H (2014) New insight in expression, transport, and secretion of brain-derived neurotrophic factor: implications in brain-related diseases. World J Biol Chem 5:409–428

    Article  PubMed  PubMed Central  Google Scholar 

  133. Chao MV (2003) Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci 4:299–309

    Article  CAS  PubMed  Google Scholar 

  134. Park H, Poo M (2013) Neurotrophin regulation of neural circuit development and function. Nat Rev Neurosci 14:7–23

    Article  CAS  PubMed  Google Scholar 

  135. Gratacos M, Gonzalez JR, Mercader JM, de Cid R, Urretavizcaya M, Estivill X (2007) Brain-derived neurotrophic factor Val66Met and psychiatric disorders: meta-analysis of case-control studies confirm association to substance-related disorders, eating disorders, and schizophrenia. Biol Psychiatry 61:911–922

    Article  CAS  PubMed  Google Scholar 

  136. Linnarsson S, Björklund A, Ernfors P (1997) Learning deficit in BDNF mutant mice. Eur J Neurosci 9:2581–2587

    Article  CAS  PubMed  Google Scholar 

  137. Ernfors P, Kucera J, Lee K, Loring J, Jaenisch R (1995) Studies on the physiological role of brain-derived neurotrophic factor and neurotrophin-3 in knockout mice. Int J Dev Biol 39:799–807

    CAS  PubMed  Google Scholar 

  138. Ray MT, Weickert CS, Wyatt E, Webster MJ (2011) Decreased BDNF, trkB-TK+ and GAD67 mRNA expression in the hippocampus of individuals with schizophrenia and mood disorders. J Psychiatr Neurosci 36:195–203

    Article  Google Scholar 

  139. Messias E, Chen CY, Eaton WW (2007) Epidemiology of schizophrenia: review of findings and myths. Psychiatr Clin N Am 30:323–338

    Article  Google Scholar 

  140. McGrath J, Saha S, Chant D, Welham J (2008) Schizophrenia: a concise overview of incidence, prevalence, and mortality. Epidemiol Rev 30:67–76

    Article  PubMed  Google Scholar 

  141. Neufeld KM, Kang N, Bienenstock J, Foster JA (2011) Reduced anxiety-like behaviour and central neurochemical change in germ-free mice. Neurogastroenterol Motil 23:255–265

    Article  CAS  PubMed  Google Scholar 

  142. O’Sullivan E, Barrett E, Grenham S, Fitzgerald P, Stanton C, Ross RP, Quigley EMM, Cryan JF, Dinan TG (2011) BDNF expression in the hippocampus of maternally separated rats: does Bifidobacterium breve 6330 alter BDNF levels? Benef Microbes 2:199–207

    Article  PubMed  CAS  Google Scholar 

  143. Klug M, Hill RA, Choy KHC, Kyrios M, Hannan AJ, van den Buuse M (2012) Long-term behavioral and NMDA receptor effects of young-adult corticosterone treatment in BDNF heterozygous mice. Neurobiol Dis 46:722–731

    Article  CAS  PubMed  Google Scholar 

  144. Gareau MG, Wine E, Rodrigues DM, Cho JH, WharyMT, Philpott DJ, MacQueen G, Sherman PM (2011) Bacterial infection causes stress-induced memory dysfunction in mice. Gut 60:307–317

    Article  PubMed  Google Scholar 

  145. Shi L, Adams MM, Long A, Carter CC, Bennett C, Sonntag WE, Nicolle MM, Robbins M, D’Agostino R, Brunso-Bechtold JK (2006) Spatial learning and memory deficits after whole-brain irradiation are associated with changes in NMDA receptor subunits in the hippocampus. Radiation Res 166:892–899

    Article  CAS  PubMed  Google Scholar 

  146. Uekita T, Okaichi Y, Kaichi H (2006) Dissociation of the roles of NMDA receptor and hippocampus in rats’ spatial learning: the effects of environmental familiarity and task familiarity. Rev Neurosci 17:163–173

    CAS  PubMed  Google Scholar 

  147. McDonald RJ, Hong NS, Craig LA, Holahan MR, Louis M, Muller RU (2005) NMDA-receptor blockade by CPP impairs post-training consolidation of a rapidly acquired spatial representation in rat hippocampus. Eur J Pharmacol 22:1201–1213

    Google Scholar 

  148. Daniel JM, Dohanich GP (2001) Acetylcholine mediates the estrogen-induced increase in NMDA receptor binding in CA1 of the hippocampus and the associated improvement in working memory. J Neurosci 21:6949–6956

    CAS  PubMed  Google Scholar 

  149. Tao X, West AE, Chen WG, Corfas G, Greenberg ME (2002) A calcium-responsive transcription factor, Ca-rf that regulates neuronal activity-dependent expression of BDNF. Neuron 3:383–395

    Article  Google Scholar 

  150. Suen PC, Wu K, Levine ES, Mount HTJ, Xu JL, Lin SY, Black IB (1997) Brain-derived neurotrophic factor rapidly enhances phosphorylation of the postsynaptic N-methyl-d-aspartate receptor subunit 1. Proc Nat Acad Sci USA 94:8191–8195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Caldeira MV, Melo CV, Pereira DB, Carvalho RF, Carvalho AS, Duarte CB (2007) BDNF regulates the expression and traffic of NMDA receptors in cultured hippocampal neurons. Mol Cell Neurosci 35:208–219

    Article  CAS  PubMed  Google Scholar 

  152. Durany N, Michel T, Zochling R, Boissl KW, Cruz-Sanchez FF, Riederer P, Thome J (2001) Brain-derived neurotrophic factor and neurotrophin 3 in schizophrenic psychoses. Schizophren Res 52:79–86

    Article  CAS  Google Scholar 

  153. Hashimoto K, Koizumi H, Nakazato M, Shimizu E, Iyo M (2005) Role of brain-derived neurotrophic factor in eating disorders: recent findings and its pathophysiological implications. Progr Neuropsychopharmacol Biol Psychiatry 29:499–504

    Article  CAS  Google Scholar 

  154. Weickert CS, Hyde, Lipska BK, Herman MM, Weinberger DR, Kleinman JE (2003) Reduced brain-derived neurotrophic factor in prefrontal cortex of patients with schizophrenia. Mol Psychiatry 8:592–610

    Article  CAS  PubMed  Google Scholar 

  155. Lau D, Bengtson CP, Buchthal B, Bading H (2015) BDNF reduces toxic extrasynaptic NMDA receptor signaling via synaptic NMDA receptors and nuclear-calcium-induced transcription of inhba/Activin A. Cell Rep 12:1353–1366

    Article  CAS  PubMed  Google Scholar 

  156. Martire A, Pepponi R, Domenici MR, Ferrante A, Chiodi V, Popoli P (2013) BDNF prevents NMDA-induced toxicity in models of Huntington’s disease: the effects are genotype specific and adenosine A2A receptor is involved. J Neurochem 125:225–235

    Article  CAS  PubMed  Google Scholar 

  157. Vasquez CE, Riener R, Reynolds E, Britton GB (2014) NMDA receptor dysregulation in chronic state: a possible mechanism underlying depression with BDNF downregulation. Neurochem Intern 79:88–97

    Article  CAS  Google Scholar 

  158. Bach SA, de Siqueira LV, Muller AP, Oses JP, Quatrim A, Emanuelli T, Vinade L, Souza DO, Moreira JD (2014) Dietary omega-3 deficiency reduces BDNF content and activation NMDA receptor and Fyn in dorsal hippocampus: Implications on persistence of long-term memory in rats. Nutr Neurosci 17:186–192

    Article  CAS  PubMed  Google Scholar 

  159. Mizuno M, Yamada K, He J, Nakajima A, Nabeshima T (2003) Involvement of BDNF receptor TrkB in spatial memory formation. Learn Mem 10:108–115

    Article  PubMed  PubMed Central  Google Scholar 

  160. Park JK, Lee SJ, Kim TW (2014) Treadmill exercise enhances NMDA receptor expression in schizophrenia mice. J Exercise Rehab 10:15–21

    Article  Google Scholar 

  161. Andoh A, Tsujikawa T, Fujiyama Y (2003). Role of dietary fiber and short-chain fatty acids in the colon. Curr Pharmaceut Design 9:347–358

    Article  CAS  Google Scholar 

  162. Gundersen BB, Blendy JA (2009) Effects of the histone deacetylase inhibitor sodium butyrate in models of depression and anxiety. Neuropharmacology 57:67–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Yamawaki Y, Fuchikami M, Morinobu S, Segawa M, Matsumoto T, Yamawaki S (2012) Antidepressant-like effect of sodium butyrate (HDAC inhibitor) and its molecular mechanism of action in the rat hippocampus. World J Biol Psychiatry 13:458–467

    Article  PubMed  Google Scholar 

  164. Valvassori SS, Varela RB, Arent CO, Dal-Pont GC, Bobsin TS, Budni J, Reus GZ, Quevedo J (2014) Sodium butyrate functions as an antidepressant and improves cognition with enhanced neurotrophic expression in models of maternal deprivation and chronic mild stress. Curr Neurovasc Res 11:359–366

    Article  CAS  PubMed  Google Scholar 

  165. Wei YB, Melas PA, Wegener G, Mathé AA, Lavebratt C (2015) Antidepressant-like effect of sodium butyrate is associated with an increase in TET1 and in 5-hydroxy-methylation levels in the bdnf gene. Intern J Neuropsychopharmacol 2015:1–10

    Google Scholar 

  166. Stilling RM, Dinan TG, Cryan JF (2014) Microbial genes, brain and behaviour—epigenetic regulation of the gut-brain axis. Genes Brain Behav 13:69–86

    Article  CAS  PubMed  Google Scholar 

  167. Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, Bienenstock J, Cryan JF (2011) Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci USA 108:16050–16055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Miller PE, Haberlen SA, Brown TT, Margolick JB, DiDonato JA, Hazen SL, Witt MD, Kingsley LA, Palella FJ, Budoff M, Jacobson LP, Post WS, Sears CL (2016) Intestinal microbiota-produced trimethylamine-n-oxide and its association with coronary stenosis and HIV Serostatus. J Acq Immun Def Synd 72:114–118

    Article  CAS  Google Scholar 

  169. Wang ZN, Roberts AB, Buffa JA, Levison BS, Zhu WF, Org E, Gu XD, Huang Y, Zamanian-Daryoush M, Culley MK, DiDonato AJ, Fu XM, Hazen JE, Krajcik D, DiDonato JA, Lusis AJ, Hazen SL (2015) Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell 163:1585–1595

    Article  CAS  PubMed  Google Scholar 

  170. Kuka J, Liepinsh E, Makrecka-Kuka M, Liepins J, Cirule H, Gustina D, Loza E, Zharkova-Malkova O, Grinberga S, Pugovics O, Dambrova M (2014) Suppression of intestinal microbiota-dependent production of pro-atherogenic trimethylamine N-oxide by shifting l-carnitine microbial degradation. Life Sci 117:84–92

    Article  CAS  PubMed  Google Scholar 

  171. Williams BB, Van Benschoten AH, Cimermancic P, Donia MS, Zimmermann M, Taketani M, Ishihara A, Kashyap PC, Fraser JS, Fischbach MA (2014) Discovery and characterization of gut microbiota decarboxylases that can produce the neurotransmitter tryptamine. Cell Host Microbe 16:495–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Kibe R, Kurihara S, Sakai Y, Suzuki H, Ooga T, Sawaki E, Muramatsu K, Nakamura A, Yamashita A, Kitada Y, Kakeyama M, Benno Y, Matsumoto M (2014) Upregulation of colonic luminal polyamines produced by intestinal microbiota delays senescence in mice. Sci Repts 4:AR4548

    Google Scholar 

  173. Asano Y, Hiramoto T, Nishino R, Aiba Y, Kimura T, Yoshihara K, Koga Y, Sudo N (2012) Critical role of gut microbiota in the production of biologically active, free catecholamines in the gut lumen of mice. Am J Physiol Gastrointest Liver Physiol 303:G1288–G1295

    Article  CAS  PubMed  Google Scholar 

  174. Reigstad CS, Salmonson CE, Rainey JF, Szurszewski JH, Linden DR, Sonnenburg JL, Farrugia G, Kashyap PC (2015) Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J 29:1395–1403

    Article  CAS  PubMed  Google Scholar 

  175. de Felipe FL, Rivas BD, Munoz R (2014) Bioactive compounds produced by gut microbial tannase: implications for colorectal cancer development. Front Microbiol 5:art684

    Google Scholar 

  176. Frankenfeld CL, Atkinson C, Wahala K, Lampe JW (2014) Obesity prevalence in relation to gut microbial environments capable of producing equol or O-desmethyl-angolensin from the isoflavone daidzein. Eur J Clin Nutr 68:526–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Garcia-Villalba R, Beltran D, Espin JC, Selma MV, Tomas-Barberan FA (2013) Time course production of urolithins from ellagic acid by human gut microbiota. J Agric Food Chem 61(S18):8797–8806

    Article  CAS  PubMed  Google Scholar 

  178. Cani PD, Lecourt E, Dewulf EM, Sohet FM, Pachikian BD, Naslain D, De Backer F, Neyrinck AM, Delzenne NM (2009) Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a meal. Am J Clin Nutr 90:1236–1243

    Article  CAS  PubMed  Google Scholar 

  179. Takagaki A, Otani S, Nanjo F (2011) Antioxidative activity of microbial metabolites of (-)-epigallocatechin gallate produced in rat intestines. Biosci Biotechnol Biochem 75:582–585

    Article  CAS  PubMed  Google Scholar 

  180. Yang CW, Zhu X, Liu N, Chen Y, Gan HX, Troy FA, Wang B (2014) Lactoferrin up-regulates intestinal gene expression of brain-derived neurotrophic factors BDNF, UCHL1 and alkaline phosphatase activity to alleviate early weaning diarrhea in postnatal piglets. J Nutr Biochem 25:834–842

    Article  CAS  PubMed  Google Scholar 

  181. Abt MC, Artis D (2009) The intestinal microbiota in health and disease: the influence of microbial products on immune cell homeostasis. Curr Opin Gastroenterol 25:496–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Salazar N, Gueimonde M, de los Reyes-Gavilan CG, Ruas-Madiedo P (2016) Exopolysaccharides produced by lactic acid bacteria and bifidobacteria as fermentable substrates by the intestinal microbiota. Crit Rev Food Sci Nutr 56:1440–1453

    Article  PubMed  CAS  Google Scholar 

  183. Brown LCW, Penaranda C, Kashyap PC, Williams BB, Clardy J, Kronenberg M, Sonnenburg JL, Comstock LE, Bluestone JA, Fischbach MA (2013) Production of alpha-galactosylceramide by a prominent member of the human gut microbiota. PLoS Biol 11:ARe1001610

    Article  CAS  Google Scholar 

  184. Liu XY, Yang G, Geng XR, Cao YJ, Li N, Ma L, Chen S, Yang PC, Liu ZG (2013) Microbial products induce claudin-2 to compromise gut epithelial barrier function. PLoS One 8:ARe68547

    Article  CAS  Google Scholar 

  185. Sainsbury A, Shi YC, Zhang L, Aljanova A, Lin Z, Nguyen AD, Herzog H, Lin S (2010) Y4 receptors and pancreatic polypeptide regulate food intake via hypothalamic orexin and brain-derived neurotropic factor dependent pathways. Neuropeptides 44:261–268

    Article  CAS  PubMed  Google Scholar 

  186. Al-Qudah M, Alkahtani R, Akbarali HI, Murthy KS, Grider JR (2015) Stimulation of synthesis and release of brain-derived neurotropic factor from intestinal smooth muscle cells by substance P and pituitary adenylate cyclase-activating peptide. Neurogastroenterol Motil 27:1162–1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Liang S, Wang T, Hu X, Luo J, Li W, Wu X, Duan Y, Jin F (2015) Administration of Lactobacillus Helveticus ns8 improves behavioral, cognitive, and biochemical aberrations caused by chronic restraint stress. Neuroscience 310:561–577

    Article  CAS  PubMed  Google Scholar 

  188. Savignac HM, Corona G, Mills H, Chen L, Spencer JPE, Tzortzis G, Burnet PWJ (2013) Prebiotic feeding elevates central brain derived neurotrophic factor, N-methyl-d-aspartate receptor subunits and d-serine. Neurochem Int 63:756–764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Bercik P, Denou E, Collins J, Jackson W, Lu J, Jury J, Deng Y, Blennerhassett P, Macri J, McCoy KD, Verdu EF, Collins SM (2011). The intestinal microbiota affect central levels of brain-derived neurotrophic factor and behaviour in mice. Gastroenterology 141:599–609

    Article  CAS  PubMed  Google Scholar 

  190. Yum SY, Caracci G, Hwang MY (2009) Schizophrenia and eating disorders. Psychiatr Clin N Am 32:809–819

    Article  Google Scholar 

  191. Dipasquale S, Pariante CM, Dazzan P, Aguglia E, McGuire P, Mondelli V (2013) The dietary pattern of patients with schizophrenia: a systematic review. J Psychiatr Res 47:197–207

    Article  PubMed  Google Scholar 

  192. Fawzi MH, Fawzi MM (2012) Disordered eating attitudes in Egyptian antipsychotic naive patients with schizophrenia. Comp Psychiatry 53:259–268

    Article  Google Scholar 

  193. Simonelli-Munoz AJ, Fortea MI, Salorio P, Gallego-Gomez JI, Sanchez-Bautista S, Balanza S (2012) Dietary habits of patients with schizophrenia: a self-reported questionnaire survey. Intern J Mental Health Nursing 21(3SI):220–228

    Article  Google Scholar 

  194. Amani R (2007) Is dietary pattern of schizophrenia patients different from healthy subjects? BMC Psychiatry 7:AR15

    Article  Google Scholar 

  195. Stokes C, Peet M (2004) Dietary sugar and polyunsaturated fatty acid consumption as predictors of severity of schizophrenia symptoms. Nutr Neurosci 7:247–249

    Article  CAS  PubMed  Google Scholar 

  196. Peet M (2004) International variations in the outcome of schizophrenia and the prevalence of depression in relation to national dietary practices: an ecological analysis. Brit J Psychiatry 184:404–408

    Article  Google Scholar 

  197. Holm-Hansen S, Low JK, Zieba J, Gjedde A, Bergersen LH, Karl T (2016) Behavioural effects of high fat diet in a mutant mouse model for the schizophrenia risk gene neuregulin 1. Genes Brain Behav 15:295–304

    Article  CAS  PubMed  Google Scholar 

  198. Gama CS, Canever L, Panizzutti B, Gubert C, Stertz L, Massuda R, Pedrini M, de Lucena DF, Luca RD, Fraga DB, Heylmann AS, Deroza PF, Zugno AI (2012) Effects of omega-3 dietary supplement in prevention of positive, negative and cognitive symptoms: a study in adolescent rats with ketamine-induced model of schizophrenia. Schizophren Res 141:162–167

    Article  Google Scholar 

  199. Jeong JJ, Woo JY, Kim KA, Han M, Kim DH (2015) Lactobacillus pentosus var. plantarum C29 ameliorates age-dependent memory impairment in Fischer 344 rats. Lett Appl Microbiol 60:307–314

    Article  CAS  PubMed  Google Scholar 

  200. Distrutti E, O’Reilly JA, McDonald C, Cipriani S, Renga B, Lynch MA, Fiorucci S (2014) Modulation of intestinal microbiota by the probiotic VSL#3 resets brain gene expression and ameliorates the age-related deficit in LTP. PLoS One 9:ARe106503

    Article  CAS  Google Scholar 

  201. Gomez-Pinilla F (2008) Brain foods: the effects of nutrients on brain function. Nat Rev Neurosci 9:568–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Tsuruga K, Sugawara N, Sato Y, Saito M, Furukori H, Nakagami T, Nakamura K, Takahashi I, Nakaji S, Yasui-Furukori N (2015) Dietary patterns and schizophrenia: a comparison with healthy controls. Neuropsychiatr Dis Treat 11:1115–1120

    Article  PubMed  PubMed Central  Google Scholar 

  203. Yu YC, Wu SJ, Li JX, Wang RY, Xie XP, Yu XF, Pan JC, Xu Y, Zheng L (2015) The effect of curcumin on the brain-gut axis in rat model of irritable bowel syndrome: involvement of 5-HT-dependent signalling. Metab Brain Dis 30:47–55

    Article  CAS  PubMed  Google Scholar 

  204. Guimaraes LR, Jacka FN, Gama CS, Berk M, Leitao-Azevedo CL, de Abreu MGB, Lobato MI, Andreazza AC, Cereser KM, Kapczinski F, Belmonte-de-Abreu P (2008) Serum levels of brain-derived neurotrophic factor in schizophrenia on a hypocaloric diet. Progr Neuro Psychopharmacol Biol Psych 32:1595–1598

    Article  CAS  Google Scholar 

  205. Darlington LG, Ramsey NW, Mansfield JR (1986) Placebo-controlled, blind-study of dietary manipulation therapy in rheumatoid arthritis. Lancet 1:236–238

    Article  CAS  PubMed  Google Scholar 

  206. Connor B, Sun Y, von Hieber D, Tang SK, Jones KS, Maucksch C (2016) AAV(1/2)-mediated BDNF gene therapy in a transgenic rat model of Huntington’s disease. Gene Ther 23:283–295

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trevor W. Stone.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maqsood, R., Stone, T.W. The Gut-Brain Axis, BDNF, NMDA and CNS Disorders. Neurochem Res 41, 2819–2835 (2016). https://doi.org/10.1007/s11064-016-2039-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-2039-1

Keywords

Navigation