Skip to main content

Advertisement

Log in

Poly(ADP-Ribose) Polymerase-1 (PARP-1) Inhibitors Reduce Reactive Gliosis and Improve Angiostatin Levels in Retina of Diabetic Rats

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Diabetic retinopathy (DR) is a multifactorial disease characterized by reactive gliosis and disbalance of angiogenesis regulators, contributing to endothelial dysfunction and microvascular complications. This study was organized to elucidate whether poly(ADP-ribose) polymerase-1 (PARP-1) inhibition could attenuate diabetes-induced damage to macroglia and correct angiogenic disbalance in diabetic rat retina. After 8 weeks of streptozotocin (STZ)-induced diabetes, Wistar male rats were treated with PARP-1 inhibitors, nicotinamide (NAm) or 3-aminobenzamide (3-AB) (100 and 30 mg/kg/daily i.p., respectively), for 14 days. After the 10-weeks experiment period, retinas were undergone an immunohistochemical staining for glial fibrillary acidic protein (GFAP), while western blots were performed to evaluate effects of PAPR-1 inhibitors on the levels of PARP-1, poly(ADP-ribosyl)ated proteins (PARs), GFAP, and angiostatin isoforms. Diabetes induced significant up-regulation and activation of retinal PARP-1, reactive gliosis development, and GFAP overexpression compared to non-diabetic control. Moreover, extensive fragmentation of both PARP-1 and GFAP (hallmarks of apoptosis and macroglia reactivation, respectively) in diabetic retina was also observed. Levels of angiostatin isoforms were dramatically decreased in diabetic retina, sustaining aberrant pro-angiogenic condition. Both NAm and 3-AB markedly attenuated damage to macroglia, evidenced by down-regulation of PARP-1, PARs and total GFAP compared to diabetic non-treated group. PARP-1-inhibitory therapy prevented formation of PARP-1 and GFAP cleavage-derived products. In retinas of anti-PARP-treated diabetic animals, partial restoration of angiostatin’s levels was shown. Therefore, PARP-1 inhibitors counteract diabetes-induced injuries and manifest retinoprotective effects, including attenuation of reactive gliosis and improvement of angiogenic status, thus, such agents could be considered as promising candidates for DR management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fong DS, Aiello LP, Ferris FL, Klein R (2004) Diabetic retinopathy. Diabetes Care 27(10):2540–2553. doi:10.2337/diacare.27.10.2540

    Article  PubMed  Google Scholar 

  2. Antonetti DA, Klein R, Gardner TW (2012) Diabetic retinopathy. N Engl J Med 366(13):1227–1239. doi:10.1056/NEJMra1005073

    Article  CAS  PubMed  Google Scholar 

  3. Kern TS (2014) Interrelationships between the retinal neuroglia and vasculature in diabetes. Diabetes Metab J 38(3):163–170. doi:10.4093/dmj.2014.38.3.163

    Article  PubMed  PubMed Central  Google Scholar 

  4. Paquet-Durand F, Silva J, Talukdar T, Johnson LE, Azadi S, van Veen T, Ueffing M, Hauck SM, Ekström PA (2007) Excessive activation of poly(ADP-ribose) polymerase contributes to inherited photoreceptor degeneration in the retinal degeneration 1 mouse. J Neurosci 27(38):10311–10319. doi:10.1523/JNEUROSCI.1514-07.2007

    Article  CAS  PubMed  Google Scholar 

  5. Chaitanya GV, Alexander JS, Babu PP (2010) PARP-1 cleavage fragments: signatures of cell-death proteases in neurodegeneration. Cell Commun Signal 8:31. doi:10.1186/1478-811X-8-31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Baydas G, Tuzcu M, Yasar A, Baydas B (2004) Early changes in glial reactivity and lipid peroxidation in diabetic rat retina: effects of melatonin. Acta Diabetol 41(3):123–128

    Article  CAS  PubMed  Google Scholar 

  7. Coorey NJ, Shen W, Chung SH, Zhu L, Gillies MC (2012) The role of glia in retinal vascular disease. Clin Exp Optom 95(3):266–281. doi:10.1111/j.1444-0938.2012.00741.x

    Article  PubMed  Google Scholar 

  8. Ly A, Yee P, Vessey KA, Phipps JA, Jobling AI, Fletcher EL (2011) Early inner retinal astrocyte dysfunction during diabetes and development of hypoxia, retinal stress, and neuronal functional loss. Invest Ophthalmol Vis Sci 52(13):9316–9326. doi:10.1167/iovs.11-7879

    Article  CAS  PubMed  Google Scholar 

  9. Dorrell MI, Aguilar E, Jacobson R, Trauger SA, Friedlander J, Siuzdak G, Friedlander M (2010) Maintaining retinal astrocytes normalizes revascularization and prevents vascular pathology associated with oxygen-induced retinopathy. Glia 58(1):43–54. doi:10.1002/glia.20900

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bringmann A, Pannicke T, Grosche J, Francke M, Wiedemann P, Skatchkov SN, Osborne NN, Reichenbach A (2006) Müller cells in the healthy and diseased retina. Prog Retin Eye Res 25(4):397–424

    Article  CAS  PubMed  Google Scholar 

  11. Sugaya-Fukasawa M, Watanabe T, Tamura M, Egashira S, Hisatomi H (2011) Glial fibrillary acidic protein is one of the key factors underlying neuron-like elongation in PC12 cells. Exp Ther Med 2(1):85–87. doi:10.3892/etm.2010.162

    CAS  PubMed  Google Scholar 

  12. Suárez I, Bodega G, Rubio M, García-Segura LM, Fernández B (1994) Astroglial induction of in vivo angiogenesis. J Neural Transplant Plast 5(1):1–10. doi:10.1155/NP.1994.1

    Article  PubMed  PubMed Central  Google Scholar 

  13. Abcouwer SF (2012) Angiogenic factors and cytokines in diabetic retinopathy. J Clin Cell Immunol 1(11):1–12. doi:10.4172/2155-9899

    Google Scholar 

  14. Simó R, Carrasco E, García-Ramírez M, Hernández C (2006) Angiogenic and antiangiogenic factors in proliferative diabetic retinopathy. Curr Diabetes Rev 2(1):71–98

    Article  PubMed  Google Scholar 

  15. Cao Y, Xue L (2004) Angiostatin. Semin Thromb Hemost 30(1):83–93. doi:10.1055/s-2004-822973

    Article  CAS  PubMed  Google Scholar 

  16. Spranger J, Hammes HP, Preissner KT, Schatz H, Pfeiffer AF (2000) Release of the angiogenesis inhibitor angiostatin in patients with proliferative diabetic retinopathy: association with retinal photocoagulation. Diabetologia 43(11):1404–1407. doi:10.1007/s001250051546

    Article  CAS  PubMed  Google Scholar 

  17. Coppini LP, Visniauskas B, Costa EF, Filho MN, Rodrigues EB, Chagas JR, Farah ME, Barros NM, Carmona AK (2015) Corneal angiogenesis modulation by cysteine cathepsins: in vitro and in vivo studies. Exp Eye Res 134:39–46. doi:10.1016/j.exer.2015.03.012

    Article  CAS  PubMed  Google Scholar 

  18. Drixler TA, Borel Rinkes IH, Ritchie ED, Treffers FW, van Vroonhoven TJ, Gebbink MF, Voest EE (2001) Angiostatin inhibits pathological but not physiological retinal angiogenesis. Invest Ophthalmol Vis Sci 42(13):3325–3330

    CAS  PubMed  Google Scholar 

  19. Shyong MP, Lee FL, Kuo PC, Wu AC, Cheng HC, Chen SL, Tung TH, Tsao YP. Reduction of experimental diabetic vascular leakage by delivery of angiostatin with a recombinant adeno-associated virus vector. Mol Vis 13:133–141

  20. Kim J, Kim Y, Kim J, Kang T (2014) PARP1 activation/expression modulates regional-specific neuronal and glial responses to seizure in a hemodynamic-independent manner. Cell Death Dis 5:e1362. doi:10.1038/cddis.2014.331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Obrosova IG, Minchenko AG, Frank RN, Seigel GM, Zsengeller Z, Pacher P, Stevens MJ, Szabó C (2004) Poly(ADP-ribose) polymerase inhibitors counteract diabetes- and hypoxia-induced retinal vascular endothelial growth factor overexpression. Int J Mol Med 14(1):55–64

    CAS  PubMed  Google Scholar 

  22. Kuchmerovska T, Shymanskyy I, Donchenko G, Kuchmerovskyy M, Pakirbaieva L, Klimenko A (2004) Poly(ADP-ribosyl)ation enhancement in brain cell nuclei is associated with diabetic neuropathy. J Diabetes Complicat 18(4):198–204. doi:10.1016/S1056-8727(03)00039-4

    Article  PubMed  Google Scholar 

  23. Chiu J, Xu B, Chen S, Feng B, Chakrabarti S (2008) Oxidative stress-induced, poly(ADP-ribose) polymerase-dependent upregulation of ET-1 expression in chronic diabetic complications. Can J Physiol Pharmacol 86(6):365–372. doi:10.1139/Y08-033

    Article  CAS  PubMed  Google Scholar 

  24. Maiese K, Chong ZZ, Hou J, Shang YC (2009) The vitamin nicotinamide: translating nutrition into clinical care. Molecules 14(9):3446–3485. doi:10.3390/molecules14093446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Stoscheck CM (1990) Quantitation of protein. Methods Enzymol 182:50–68

    Article  CAS  PubMed  Google Scholar 

  26. Tykhomyrov AA, Yusova EI, Diordieva SI, Corsa VV, Grinenko TV (2013) Production and characteristics of antibodies against K1-3 fragment of human plasminogen. Biotechnol Acta 6(1):86–96

    Article  Google Scholar 

  27. Tura A, Schuettauf F, Monnier PP, Bartz-Schmidt KU, Henke-Fahle S (2009) Efficacy of Rho-kinase inhibition in promoting cell survival and reducing reactive gliosis in the rodent retina. Invest Ophthalmol Vis Sci 50(1):452–461. doi:10.1167/iovs.08-1973

    Article  PubMed  Google Scholar 

  28. Rajesh M, Mukhopadhyay P, Bátkai S, Godlewski G, Haskó G, Liaudet L, Pacher P (2006) Pharmacological inhibition of poly(ADP-ribose) polymerase inhibits angiogenesis. Biochem Biophys Res Commun 350(2):352–357. doi:10.1016/j.bbrc.2006.09.049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tsacopoulos M, Poitry-Yamate CL, MacLeish PR, Poitry S (1998) Trafficking of molecules and metabolic signals in the retina. Prog Retin Eye Res 17(3):429–442

    Article  CAS  PubMed  Google Scholar 

  30. Rungger-Brändle E, Dosso AA, Leuenberger PM (2000) Glial reactivity, an early feature of diabetic retinopathy. Invest Ophthalmol Vis Sci 41(7):1971–1980

    PubMed  Google Scholar 

  31. Chen MH, Hagemann TL, Quinlan RA, Messing A, Perng MD (2013) Caspase cleavage of GFAP produces an assembly-compromised proteolytic fragment that promotes filament aggregation. ASN Neuro 5(5):e00125. doi:10.1042/AN20130032

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mouser PE, Head E, Ha KH, Rohn TT (2006) Caspase-mediated cleavage of glial fibrillary acidic protein within degenerating astrocytes of the Alzheimer’s disease brain. Am J Pathol 168(3):936–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang X, Barile G, Chang S, Hays A, Pachydaki S, Schiff W, Sparrow J (2005) Apoptosis and cell proliferation in proliferative retinal disorders: PCNA, Ki-67, caspase-3, and PARP expression. Curr Eye Res 30(5):395–403. doi:10.1080/02713680590956306

    Article  PubMed  Google Scholar 

  34. Barot M, Gokulgandhi MR, Patel S, Mitra AK (2013) Microvascular complications and diabetic retinopathy: recent advances and future implications. Future Med Chem 5(3):301–314. doi:10.4155/fmc.12.206

    Article  CAS  PubMed  Google Scholar 

  35. O’Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Cao Y, Moses M, Lane WS, Sage EH, Folkman J (1994) Angiostatin: a circulating endothelial cell inhibitor that suppresses angiogenesis and tumor growth. Cold Spring Harb Symp Quant Biol 59:471–482

    Article  PubMed  Google Scholar 

  36. Tykhomyrov AA, Shram SI, Grinenko TV (2015) Role of angiostatins in diabetic complications. Biomed Khim 61(1):41–56. doi:10.1134/S1990750814020140

    Article  CAS  PubMed  Google Scholar 

  37. Pearce JW, Janardhan KS, Caldwell S, Singh B (2007) Angiostatin and integrin αvβ3 in the feline, bovine, canine, equine, porcine and murine retina and cornea. Vet Ophthalmol 10(5):313–319

    Article  CAS  PubMed  Google Scholar 

  38. Cao Y, Chen A, An SS, Ji RW, Davidson D, Llinás M (1997) Kringle 5 of plasminogen is a novel inhibitor of endothelial cell growth. J Biol Chem 272(36):22924–22928

    Article  CAS  PubMed  Google Scholar 

  39. Zhang SX, Sima J, Shao C, Fant J, Chen Y, Rohrer B, Gao G, Ma JX (2004) Plasminogen kringle 5 reduces vascular leakage in the retina in rat models of oxygen-induced retinopathy and diabetes. Diabetologia 47(1):124–131. doi:10.1007/s00125-003-1276-4

    Article  CAS  PubMed  Google Scholar 

  40. Ma J, Li C, Shao C, Gao G, Yang X (2012) Decreased K5 receptor expression in the retina, a potential pathogenic mechanism for diabetic retinopathy. Mol Vis 18:330–336

    PubMed  PubMed Central  Google Scholar 

  41. Sima J, Zhang SX, Shao C, Fant J, Ma J (2004) The effect of angiostatin on vascular leakage and VEGF expression in rat retina. FEBS Lett 564(1–2):19–23. doi:10.1016/S0014-5793(04)00297-2

    Article  CAS  PubMed  Google Scholar 

  42. Li N, Chen J (2014) ADP-ribosylation: activation, recognition, and removal. Mol Cells 37(1):9–16. doi:10.14348/molcells.2014.2245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Drel VR, Pacher P, Stavniichuk R, Xu W, Zhang J, Kuchmerovska TM, Slusher B, Obrosova IG (2011) Poly(ADP-ribose)polymerase inhibition counteracts renal hypertrophy and multiple manifestations of peripheral neuropathy in diabetic Akita mice. Int J Mol Med 28(4):629–635. doi:10.3892/ijmm.2011.709

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Virág L, Szabó C (2002) The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol Rev 54(3):375–429

    Article  PubMed  Google Scholar 

  45. Shen CC, Huang HM, Ou HC, Chen HL, Chen WC, Jeng KC (2004) Protective effect of nicotinamide on neuronal cells under oxygen and glucose deprivation and hypoxia/reoxygenation. J Biomed Sci 11(4):472–481. doi:10.1159/000077897

    Article  CAS  PubMed  Google Scholar 

  46. Bai S, Sheline CT (2013) NAD(+) maintenance attenuates light induced photoreceptor degeneration. Exp Eye Res 108:76–83. doi:10.1016/j.exer.2012.12.007

    Article  CAS  PubMed  Google Scholar 

  47. Klaidman L, Morales M, Kem S, Yang J, Chang ML, Adams JD (2003) Nicotinamide offers multiple protective mechanisms in stroke as a precursor for NAD+, as a PARP inhibitor and by partial restoration of mitochondrial function. Pharmacology 69(3):150–157

    Article  CAS  PubMed  Google Scholar 

  48. Kuchmerovska T, Shymanskyy I, Chlopicki S, Klimenko A (2010) 1-methylnicotinamide (MNA) in prevention of diabetes-associated brain disorders. Neurochem Int 56(2):221–228. doi:10.1016/j.neuint.2009.10.004

    Article  CAS  PubMed  Google Scholar 

  49. Miki K, Uehara N, Shikata N, Matsumura M, Tsubura A (2007) Poly(ADP-ribose) polymerase inhibitor 3-aminobenzamide rescues N-methyl-N-nitrosourea-induced photoreceptor cell apoptosis in Sprague-Dawley rats through preservation of nuclear factor-kappaB activity. Exp Eye Res 84(2):285–292. doi:10.1016/j.exer.2006.09.023

    Article  CAS  PubMed  Google Scholar 

  50. Ji D, Li GY, Osborne NN (2008) Nicotinamide attenuates retinal ischemia and light insults to neurones. Neurochem Int 52(4–5):786–798. doi:10.1016/j.neuint.2007.09.012

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Kuznetsov K.I. (PhD, research fellow) and Professor Veselovsky N.S. (Bogomoletz Institute of Physiology of NAS of Ukraine) for their cooperation, expert technical assistance, and fruitful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artem A. Tykhomyrov.

Ethics declarations

Conflict of Interest

The authors declare that there are no conflicts of interest regarding the publishing of this paper.

Ethical Approval

All applicable international, national, and Institutional Animal Care and Use Committee at Palladin Institute of Biochemistry of NASU (Kyiv, Ukraine; No. 0112U002625) guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guzyk, M.M., Tykhomyrov, A.A., Nedzvetsky, V.S. et al. Poly(ADP-Ribose) Polymerase-1 (PARP-1) Inhibitors Reduce Reactive Gliosis and Improve Angiostatin Levels in Retina of Diabetic Rats. Neurochem Res 41, 2526–2537 (2016). https://doi.org/10.1007/s11064-016-1964-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-1964-3

Keywords

Navigation