Skip to main content
Log in

NAD+ Treatment Can Prevent Rotenone-Induced Increases in DNA Damage, Bax Levels and Nuclear Translocation of Apoptosis-Inducing Factor in Differentiated PC12 Cells

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Nicotinamide adenine dinucleotide (NAD+) plays critical roles in energy metabolism, mitochondrial functions, calcium homeostasis and immunological functions. Our previous studies have found that NAD+ administration can profoundly decrease ischemic brain injury and traumatic brain injury. Our recent study has also provided first direct evidence indicating that NAD+ treatment can decrease cellular apoptosis, while the mechanisms underlying this protective effect remain unclear. In our current study, we determined the effects of NAD+ treatment on several major factors in apoptosis and necrosis, including levels of Bax and nuclear translocation of apoptosis-inducing factor (AIF), as well as levels of DNA double-strand breaks (DSBs) and intracellular ATP in rotenone-treated differentiated PC12 cells. We found that NAD+ treatment can markedly attenuate the rotenone-induced increases in the levels of Bax and nuclear translocation of AIF in the cells. We further found that NAD+ treatment can significantly attenuate the rotenone-induced increase in the levels of DSBs and decrease in the intracellular ATP levels. Collectively, our study has suggested mechanisms underlying the preventive effects of NAD+ on apoptosis, which has highlighted the therapeutic potential of NAD+ for decreasing apoptotic changes in multiple major diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ying W (2008) NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences. Antioxid Redox Signal 10(2):179–206. doi:10.1089/ars.2007.1672

    Article  CAS  PubMed  Google Scholar 

  2. Alano CC, Garnier P, Ying W, Higashi Y, Kauppinen TM, Swanson RA (2010) NAD+ depletion is necessary and sufficient for poly (ADP-ribose) polymerase-1-mediated neuronal death. J Neurosci 30(8):2967–2978

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Alano CC, Ying W, Swanson RA (2004) Poly (ADP-ribose) polymerase-1-mediated cell death in astrocytes requires NAD+ depletion and mitochondrial permeability transition. J Biol Chem 279(18):18895–18902

    Article  CAS  PubMed  Google Scholar 

  4. Ying W, Garnier P, Swanson RA (2003) NAD+ repletion prevents PARP-1-induced glycolytic blockade and cell death in cultured mouse astrocytes. Biochem Biophys Res Commun 308(4):809–813

    Article  CAS  PubMed  Google Scholar 

  5. Won SJ, Choi BY, Yoo BH, Sohn M, Ying W, Swanson RA, Suh SW (2012) Prevention of traumatic brain injury-induced neuron death by intranasal delivery of nicotinamide adenine dinucleotide. J Neurotrauma 29(7):1401–1409

    Article  PubMed  Google Scholar 

  6. Ying W, Wei G, Wang D, Wang Q, Tang X, Shi J, Zhang P, Lu H (2006) Intranasal administration with NAD+ profoundly decreases brain injury in a rat model of transient focal ischemia. Front Biosci 12:2728–2734

    Article  Google Scholar 

  7. Zheng C, Han J, Xia W, Shi S, Liu J, Ying W (2012) NAD+ administration decreases ischemic brain damage partially by blocking autophagy in a mouse model of brain ischemia. Neurosci Lett 512(2):67–71

    Article  CAS  PubMed  Google Scholar 

  8. Hong Y, Nie H, Wu D, Wei X, Ding X, Ying W (2014) NAD+ treatment prevents rotenone-induced apoptosis and necrosis of differentiated PC12 cells. Neurosci Lett 560:46–50. doi:10.1016/j.neulet.2013.11.039

    Article  CAS  PubMed  Google Scholar 

  9. Esposito E, Cuzzocrea S (2010) New therapeutic strategy for Parkinsons and Alzheimers disease. Curr Med Chem 17(25):2764–2774

    Article  CAS  PubMed  Google Scholar 

  10. Borutaite V (2010) Mitochondria as decision-makers in cell death. Environ Mol Mutagen 51(5):406–416. doi:10.1002/em.20564

    CAS  PubMed  Google Scholar 

  11. Greenamyre JT, Betarbet R, Sherer TB (2003) The rotenone model of Parkinson’s disease: genes, environment and mitochondria. Parkinsonism Relat Disord 9:59–64

    Article  Google Scholar 

  12. Kristal BS, Stavrovskaya IG, Narayanan MV, Krasnikov BF, Brown AM, Beal MF, Friedlander RM (2004) The mitochondrial permeability transition as a target for neuroprotection. J Bioenerg Biomembr 36(4):309–312

    Article  CAS  PubMed  Google Scholar 

  13. Greenamyre JT, Betarbet R, Sherer TB (2003) The rotenone model of Parkinson’s disease: genes, environment and mitochondria. Parkinsonism Relat Disord 9(Suppl 2):S59–S64

    Article  PubMed  Google Scholar 

  14. Jang SJ, Ham MS, Lee JM, Chung SK, Lee HJ, Kim JH, Chang HC, Lee JH, Chung DK (2003) New integration vector using a cellulase gene as a screening marker for Lactobacillus. FEMS Microbiol Lett 224(2):191–195

    Article  CAS  PubMed  Google Scholar 

  15. Cande C, Cecconi F, Dessen P, Kroemer G (2002) Apoptosis-inducing factor (AIF): key to the conserved caspase-independent pathways of cell death? J Cell Sci 115(Pt 24):4727–4734

    Article  CAS  PubMed  Google Scholar 

  16. Marella M, Seo BB, Matsuno-Yagi A, Yagi T (2007) Mechanism of cell death caused by complex I defects in a rat dopaminergic cell line. J Biol Chem 282(33):24146–24156

    Article  CAS  PubMed  Google Scholar 

  17. Wang S, Xing Z, Vosler PS, Yin H, Li W, Zhang F, Signore AP, Stetler RA, Gao Y, Chen J (2008) Cellular NAD replenishment confers marked neuroprotection against ischemic cell death role of enhanced DNA repair. Stroke 39(9):2587–2595

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Chung DH, Im Lee J, Kook MC, Kim JR, Kim SH, Choi EY, Park SH, Song HG (1998) ILK (β1-integrin-linked protein kinase): a novel immunohistochemical marker for Ewing’s sarcoma and primitive neuroectodermal tumour. Virchows Arch 433(2):113–117

    Article  CAS  PubMed  Google Scholar 

  19. Sheng C, Chen H, Wang B, Liu T, Hong Y, Shao J, He X, Ma Y, Nie H, Liu N, Xia W, Ying W (2012) NAD+ administration significantly attenuates synchrotron radiation X-ray-induced DNA damage and structural alterations of rodent testes. Int J Physiol Pathophysiol Pharmacol 4(1):1–9

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Chung Y, Eu KW, Machin D, Ho J, Nyam D, Leong A, Ho Y, Seow-Choen F (1998) Young age is not a poor prognostic marker in colorectal cancer. Br J Surg 85(9):1255–1259

    Article  CAS  PubMed  Google Scholar 

  21. Yamada Y, Coffman CR (2005) DNA damage-induced programmed cell death: potential roles in germ cell development. Ann N Y Acad Sci 1049(1):9–16

    Article  CAS  PubMed  Google Scholar 

  22. Eguchi Y, Shimizu S, Tsujimoto Y (1997) Intracellular ATP levels determine cell death fate by apoptosis or necrosis. Cancer Res 57(10):1835–1840

    CAS  PubMed  Google Scholar 

  23. Stryer L (1995) Biochemistry. Freeman and Company, New York

    Google Scholar 

  24. Greenamyre JT, MacKenzie G, Peng TI, Stephans SE (1999) Mitochondrial dysfunction in Parkinson's disease. Biochem Soc Symp 66(1):85–97

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Chinese National Science Foundation Grants #81171098 and #81271305 (to W. Y.), and two Shanghai Jiao Tong University Grants for Interdisciplinary Research on Medicine and Engineering (to W. Y.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihai Ying.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 1449 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, Y., Nie, H., Wei, X. et al. NAD+ Treatment Can Prevent Rotenone-Induced Increases in DNA Damage, Bax Levels and Nuclear Translocation of Apoptosis-Inducing Factor in Differentiated PC12 Cells. Neurochem Res 40, 837–842 (2015). https://doi.org/10.1007/s11064-015-1534-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-015-1534-0

Keywords

Navigation