Skip to main content

Advertisement

Log in

Nonvesicular Release of ATP from Rat Retinal Glial (Müller) Cells is Differentially Mediated in Response to Osmotic Stress and Glutamate

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Retinal glial (Müller) cells release ATP upon osmotic stress or activation of metabotropic glutamate receptors. ATP inhibits the osmotic Müller cell swelling by activation of P2Y1 receptors. In the present study, we determined the molecular pathways of the ATP release from Müller cells in slices of the rat retina. Administration of the ATP/ADPase apyrase induced a swelling of Müller cells under hypoosmotic conditions, and prevented the swelling-inhibitory effect of glutamate, suggesting that swelling inhibition is mediated by extracellular ATP. A hypoosmotic swelling of Müller cells was also observed in the presence of a blocker of multidrug resistance channels (MK-571), a CFTR inhibitor (glibenclamide), and connexin hemichannel blockers (18-α-glycyrrhetinic acid, 100 µM carbenoxolone). The swelling-inhibitory effect of glutamate was prevented by MK-571, the connexin hemichannel blockers, and a pannexin-1 hemichannel blocker (5 µM carbenoxolone). The p-glycoprotein blocker verapamil had no effect. As revealed by single-cell RT-PCR, subpopulations of Müller cells expressed mRNAs for pannexin-1 and -2, and connexins 30, 30.3, 32, 43, 45, and 46. The data may suggest that rat Müller cells release ATP by multidrug resistance channels, CFTR, and connexin hemichannels in response to osmotic stress, while glutamate induces a release of ATP via multidrug resistance channels, connexin hemichannels, and pannexin-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BAPTA/AM:

Bis-(o-aminophenoxy)ethane-N,N,N′,N’-tetra-acetic acid acetoxymethyl ester

CFTR:

Cystic fibrosis transmembrane conductance regulator

DPCPX:

8-Cyclopentyl-1,3-dipropylxanthine

LY341495:

(2S)-2-Amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl) propanoic acid

mGluRs:

Metabotropic glutamate receptors

MK-571:

5-(3-(2-(7-Chloroquinolin-2-yl)ethenyl)phenyl)-8-dimethylcarbamyl-4,6-dithiaoctanoic acid

MRS2179:

N 6-methyl-2′-deoxyadenosine-3′,5′-bisphosphate

References

  1. Abbracchio MP, Burnstock G, Verkhratsky A, Zimmermann H (2009) Purinergic signalling in the nervous system: an overview. Trends Neurosci 32:19–29

    Article  CAS  PubMed  Google Scholar 

  2. Bao L, Locovei S, Dahl G (2004) Pannexin membrane channels are mechanosensitive conduits for ATP. FEBS Lett 572:65–68

    Article  CAS  PubMed  Google Scholar 

  3. Barbe MT, Monyer H, Bruzzone R (2006) Cell–cell communication beyond connexins: the pannexin channels. Physiology (Bethesda) 21:103–114

    Article  CAS  Google Scholar 

  4. Boeynaems JM, Communi D, Gonzalez NS, Robaye B (2005) Overview of the P2 receptors. Semin Thromb Hemost 31:139–149

    Article  CAS  PubMed  Google Scholar 

  5. Braunstein GM, Roman RM, Clancy JP, Kudlow BA, Taylor AL, Shylonsky VG, Jovov B, Peter K, Jilling T, Ismailov II, Benos DJ, Schwiebert LM, Fitz JG, Schwiebert EM (2001) Cystic fibrosis transmembrane conductance regulator facilitates ATP release by stimulating a separate ATP release channel for autocrine control of cell volume regulation. J Biol Chem 276:6621–6630

    Article  CAS  PubMed  Google Scholar 

  6. Bringmann A, Uckermann O, Pannicke T, Iandiev I, Reichenbach A, Wiedemann P (2005) Neuronal versus glial cell swelling in the ischaemic retina. Acta Ophthalmol Scand 83:528–538

    Article  PubMed  Google Scholar 

  7. Bringmann A, Pannicke T, Grosche J, Francke M, Wiedemann P, Skatchkov SN, Osborne NN, Reichenbach A (2006) Müller cells in the healthy and diseased retina. Prog Retin Eye Res 25:397–424

    Article  CAS  PubMed  Google Scholar 

  8. Bruzzone R, Barbe MT, Jakob NJ, Monyer H (2005) Pharmacological properties of homomeric and heteromeric pannexin hemichannels expressed in Xenopus oocytes. J Neurochem 92:1033–1043

    Article  CAS  PubMed  Google Scholar 

  9. Dmitriev AV, Govardovskii VI, Schwahn HN, Steinberg RH (1999) Light-induced changes of extracellular ions and volume in the isolated chick retina-pigment epithelium preparation. Vis Neurosci 16:1157–1167

    Article  CAS  PubMed  Google Scholar 

  10. Dvoriantchikova G, Ivanov D, Panchin Y, Shestopalov VI (2006) Expression of pannexin family of proteins in the retina. FEBS Lett 580:2178–2182

    Article  CAS  PubMed  Google Scholar 

  11. Felmy F, Pannicke T, Richt JA, Reichenbach A, Guenther E (2001) Electrophysiological properties of rat retinal Müller (glial) cells in postnatally developing and in pathologically altered retinae. Glia 34:190–199

    Article  CAS  PubMed  Google Scholar 

  12. Housley GD, Bringmann A, Reichenbach A (2009) Purinergic signaling in special senses. Trends Neurosci 32:128–141

    Article  CAS  PubMed  Google Scholar 

  13. Krügel K, Wurm A, Linnertz R, Pannicke T, Wiedemann P, Reichenbach A, Bringmann A (2010) Erythropoietin inhibits osmotic swelling of retinal glial cells by Janus kinase and extracellular signal-regulated kinases1/2-mediated release of vascular endothelial growth factor. Neuroscience 165:1147–1158

    Article  PubMed  Google Scholar 

  14. Linnertz R, Wurm A, Pannicke T, Krügel K, Hollborn M, Härtig W, Iandiev I, Wiedemann P, Reichenbach A, Bringmann A (2011) Activation of voltage-gated Na+ and Ca2+ channels is required for vesicular release of glutamate from retinal glial cells implicated in cell volume regulation. Neuroscience 188:23–34

    Article  CAS  PubMed  Google Scholar 

  15. Liu GJ, Kalous A, Werry EL, Bennett MR (2006) Purine release from spinal cord microglia after elevation of calcium by glutamate. Mol Pharmacol 70:851–859

    Article  CAS  PubMed  Google Scholar 

  16. Manley GT, Fujimura M, Ma T, Noshita N, Filiz F, Bollen AW, Chan P, Verkman AS (2000) Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat Med 6:159–163

    Article  CAS  PubMed  Google Scholar 

  17. Metea MR, Newman EA (2006) Glial cells dilate and constrict blood vessels: a mechanism of neurovascular coupling. J Neurosci 26:2862–2870

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Newman EA (2001) Propagation of intercellular calcium waves in retinal astrocytes and Müller cells. J Neurosci 21:2215–2223

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Newman EA, Zahs KR (1997) Calcium waves in retinal glial cells. Science 275:844–847

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Newman EA, Zahs KR (1998) Modulation of neuronal activity by glial cells in the retina. J Neurosci 18:4022–4028

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Pannicke T, Iandiev I, Uckermann O, Biedermann B, Kutzera F, Wiedemann P, Wolburg H, Reichenbach A, Bringmann A (2004) A potassium channel-linked mechanism of glial cell swelling in the postischemic retina. Mol Cell Neurosci 26:493–502

    Article  CAS  PubMed  Google Scholar 

  22. Pearson RA, Dale N, Llaudet E, Mobbs P (2005) ATP released via gap junction hemichannels from the pigment epithelium regulates neural retinal progenitor proliferation. Neuron 46:731–744

    Article  CAS  PubMed  Google Scholar 

  23. Reigada D, Mitchell CH (2005) Release of ATP from retinal pigment epithelial cells involves both CFTR and vesicular transport. Am J Physiol 288:C132–C140

    CAS  Google Scholar 

  24. Reigada D, Lu W, Zhang M, Mitchell CH (2008) Elevated pressure triggers a physiological release of ATP from the retina: possible role for pannexin hemichannels. Neuroscience 157:396–404

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Resta V, Novelli E, Vozzi G, Scarpa C, Caleo M, Ahluwalia A, Solini A, Santini E, Parisi V, Di Virgilio F, Galli-Resta L (2007) Acute retinal ganglion cell injury caused by intraocular pressure spikes is mediated by endogenous extracellular ATP. Eur J Neurosci 25:2741–2754

    Article  PubMed  Google Scholar 

  26. Skatchkov SN, Eaton MJ, Shuba YM, Kucheryavykh YV, Derst C, Veh RW, Wurm A, Iandiev I, Pannicke T, Bringmann A, Reichenbach A (2006) Tandem-pore domain potassium channels are functionally expressed in retinal (Müller) glial cells. Glia 53:266–276

    Article  CAS  PubMed  Google Scholar 

  27. Slezak M, Grosche A, Niemiec A, Tanimoto N, Pannicke T, Münch TA, Crocker B, Isope P, Härtig W, Beck SC, Huber G, Ferracci G, Perraut M, Reber M, Miehe M, Demais V, Lévêque C, Metzger D, Szklarczyk K, Przewlocki R, Seeliger MW, Sage-Ciocca D, Hirrlinger J, Reichenbach A, Reibel S, Pfrieger FW (2012) Relevance of exocytotic glutamate release from retinal glia. Neuron 74:504–516

    Article  CAS  PubMed  Google Scholar 

  28. Stout CE, Costantin JL, Naus CCG, Charles AC (2002) Intercellular calcium signaling in astrocytes via ATP release through connexin hemichannels. J Biol Chem 277:10482–10488

    Article  CAS  PubMed  Google Scholar 

  29. Uckermann O, Vargová L, Ulbricht E, Klaus C, Weick M, Rillich K, Wiedemann P, Reichenbach A, Syková E, Bringmann A (2004) Glutamate-evoked alterations of glial and neuronal cell morphology in the guinea-pig retina. J Neurosci 24:10149–10158

    Article  CAS  PubMed  Google Scholar 

  30. Uckermann O, Wolf A, Kutzera F, Kalisch F, Beck-Sickinger A, Wiedemann P, Reichenbach A, Bringmann A (2006) Glutamate release by neurons evokes a purinergic inhibitory mechanism of osmotic glial cell swelling in the rat retina: activation by neuropeptide Y. J Neurosci Res 83:538–550

    Article  CAS  PubMed  Google Scholar 

  31. Vogler S, Grosche A, Pannicke T, Ulbricht E, Wiedemann P, Reichenbach A, Bringmann A (2013) Hypoosmotic and glutamate-induced swelling of bipolar cells in the rat retina: comparison with swelling of Müller glial cells. J Neurochem 126:372–381

    Article  CAS  PubMed  Google Scholar 

  32. Wurm A, Pannicke T, Wiedemann P, Reichenbach A, Bringmann A (2008) Glial cell-derived glutamate mediates autocrine cell volume regulation in the retina: activation by VEGF. J Neurochem 104:386–399

    CAS  PubMed  Google Scholar 

  33. Zahs KR, Kofuji P, Meier C, Dermietzel R (2003) Connexin immunoreactivity in glial cells of the rat retina. J Comp Neurol 455:531–546

    Article  PubMed  Google Scholar 

  34. Zhang X, Zhang M, Laties AM, Mitchell CH (2005) Stimulation of P2X7 receptors elevates Ca2+ and kills retinal ganglion cells. Invest Ophthalmol Vis Sci 46:2183–2191

    Article  PubMed  Google Scholar 

  35. Zhang X, Zhang M, Laties AM, Mitchell CH (2006) Balance of purines may determine life or death of retinal ganglion cells as A3 adenosine receptors prevent loss following P2X7 receptor stimulation. J Neurochem 98:566–575

    Article  CAS  PubMed  Google Scholar 

  36. Zhang X, Li A, Ge J, Reigada D, Laties AM, Mitchell CH (2007) Acute increase of intraocular pressure releases ATP into the anterior chamber. Exp Eye Res 85:637–643

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Deutsche Forschungsgemeinschaft (GRK 1097/1; RE 849/12-2; RE 849/16-1; KO 1547/7-1).

Informed consent

Informed consent was obtained from all individual participants included in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Bringmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voigt, J., Grosche, A., Vogler, S. et al. Nonvesicular Release of ATP from Rat Retinal Glial (Müller) Cells is Differentially Mediated in Response to Osmotic Stress and Glutamate. Neurochem Res 40, 651–660 (2015). https://doi.org/10.1007/s11064-014-1511-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-014-1511-z

Keywords

Navigation