Skip to main content
Log in

Angiotensin II Inhibits Iron Uptake and Release in Cultured Neurons

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Based on the well-confirmed roles of angiotensin II (ANGII) in iron transport of peripheral organs and cells, the causative link of excess brain iron with and the involvement of ANGII in neurodegenerative disorders, we speculated that ANGII might also have an effect on expression of iron transport proteins in the brain. In the present study, we investigated effects of ANGII on iron uptake and release using the radio-isotope methods as well as expression of cell iron transport proteins by Western blot analysis in cultured neurons. Our findings demonstrated for the first time that ANGII significantly reduced transferrin-bound iron and non-transferrin bound iron uptake and iron release as well as expression of two major iron uptake proteins transferrin receptor 1 and divalent metal transporter 1 and the key iron exporter ferroportin 1 in cultured neurons. The findings suggested that endogenous ANGII might have a physiological significance in brain iron metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ACE:

Angiotensin-converting enzyme

AD:

Alzheimer’s disease

ANGII:

Angiotensin II

AT1 and AT2:

Angiotensin II (ANGII) type 1 receptor and type 2 receptor

DMT1 − IRE:

Divalent metal transporter 1 without iron response element

DMT1 + IRE:

Divalent metal transporter 1 with iron response element

Fpn1:

Ferroportin 1

GFAP:

Glial fibrillary acidic protein

iNOS:

Inducible nitric oxide synthase

MAP2:

Microtubule-associated protein 2

NTBI:

Non-transferrin bound iron

PBS:

Phosphate buffered saline

PD:

Parkinson’s disease

RAS:

Renin–angiotensin system

Tf-Fe:

Transferrin-bound iron

TfR1:

Transferrin receptor 1

References

  1. Benkovic SA, Connor JR (1992) Ferritin, transferrin and iron in normal and aged rat brains. Anat Rec 232:10A

    Google Scholar 

  2. Cahill CM, Lahiri DK, Huang X, Rogers JT (2009) Amyloid precursor protein and alpha synuclein translation, implications for iron and inflammation in neurodegenerative diseases. Biochim Biophys Acta 1790(7):615–628

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Campbell DJ (1987) Circulating and tissue angiotensin systems. J Clin Invest 79:1–6

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Chang YZ, Ke Y, Du JR, Halpern GM, Ho KP, Zhu L, Gu XS, Xu YJ, Wang Q, Li LZ, Wang CY, Qian ZM (2006) Increased divalent metal transporter 1 expression might be associated with the neurotoxicity of L-DOPA. Mol Pharmacol 69(3):968–974

    CAS  PubMed  Google Scholar 

  5. Constantinescu CS, Goodman DB, Grossman RI, Mannon LJ, Cohen JA (1997) Serum angiotensin-converting enzyme in multiple sclerosis. Arch Neurol 54:1012–1015

    Article  CAS  PubMed  Google Scholar 

  6. Dinh DT, Frauman AG, Johnston CI, Fabiani ME (2001) Angiotensin receptors: distribution, signaling and function. Clin Sci 100:481–492

    Article  CAS  PubMed  Google Scholar 

  7. Donovan A, Brownlie A, Zhou Y, Shepard J, Pratt SJ, Moynihan J, Paw BH, Drejer A, Barut B, Zapata A, Law TC, Brugnara C, Lux SE, Pinkus GS, Pinkus JL, Kingsley PD, Palis J, Fleming MD, Andrews NC, Zon LI (2000) Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature 403(6771):776–781

    Article  CAS  PubMed  Google Scholar 

  8. Du F, Qian C, Qian ZM, Wu XM, Xie H, Yung WH, Ke Y (2011) Hepcidin directly inhibits transferrin receptor 1 expression in astrocytes via a cyclic AMP-protein kinase a pathway. Glia 59(6):936–945

    Article  PubMed  Google Scholar 

  9. Gasparo MD, Catt KJ, Inagami T, Wright JW, Unger TH (2000) International union of pharmacology XXIII. The angiotensin II receptors. Pharmacol Rev 52:415–472

    PubMed  Google Scholar 

  10. Ge J, Barnes NM (1996) Alterations in angiotensin AT1 and AT2 receptor subtype levels in brain regions from patients with neurodegenerative disorders. Eur J Pharmacol 297:299–306

    Article  CAS  PubMed  Google Scholar 

  11. Ge XH, Wang Q, Qian ZM, Zhu L, Du F, Yung WH, Yang L, Ke Y (2009) The iron regulatory hormone hepcidin reduces ferroportin 1 content and iron release in H9C2 cardiomyocytes. J Nutr Biochem 20(11):860–865

    Article  CAS  PubMed  Google Scholar 

  12. Gelman BB (1995) Iron in CNS disease. J Neuropathol Exp Neurol 54:477–486

    Article  CAS  PubMed  Google Scholar 

  13. Grammatopoulos TN, Ahmadi F, Jones SM, Fariss MW, Weyhenmeyer JA, Zawada WM (2005) Angiotensin II protects cultured midbrain dopaminergic neurons against rotenone-induced cell death. Brain Res 1045(1–2):64–71

    Article  CAS  PubMed  Google Scholar 

  14. Grammatopoulos TN, Jones SM, Ahmadi FA, Hoover BR, Snell LD, Skoch J, Jhaveri VV, Poczobutt AM, Weyhenmeyer JA, Zawada WM (2007) Angiotensin type 1 receptor antagonist losartan, reduces MPTP-induced degeneration of dopaminergic neurons in substantia nigra. Mol Neurodegener 2:1

    Article  PubMed Central  PubMed  Google Scholar 

  15. Grammatopoulos TN, Outeiro TF, Hyman BT, Standaert DG (2007) Angiotensin II protects against alpha-synuclein toxicity and reduces protein aggregation in vitro. Biochem Biophys Res Commun 363(3):846–851

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Hare DJ, Adlard PA, Doble PA, Finkelstein DI (2013) Metallobiology of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine neurotoxicity. Metallomics 5(2):91–109

    Article  CAS  PubMed  Google Scholar 

  17. Hentze MW, Kuhn LC (1996) Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress. Proc Natl Acad Sci USA 93:8175–8182

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Ho KP, Li L, Zhao L, Qian ZM (2003) Genistein protects primary cortical neurons from iron-induced lipid peroxidation. Mol Cell Biochem 247(1–2):219–222

    Article  CAS  PubMed  Google Scholar 

  19. Inagami T, Eguchi S, Numaguchi K, Motley ED, Tang H, Matsumoto T, Yamakawa T (1999) Cross-talk between angiotensin II receptors and the tyrosine kinases and phosphatases. Am Soc Nephrol 11:S57–S61

    Google Scholar 

  20. Ishizaka N, Aizawa T, Yamazaki I, Usui S, Mori I, Kurokawa K, Tang SS, Ingelfinger JR, Ohno M, Nagai R (2002) Abnormal iron deposition in renal cells in the rat with chronic angiotensin II administration. Lab Investig 82(1):87–96

    Article  CAS  PubMed  Google Scholar 

  21. Ishizaka N, Saito K, Mori I, Matsuzaki G, Ohno M, Nagai R (2005) Iron chelation suppresses ferritin upregulation and attenuates vascular dysfunction in the aorta of angiotensin II-infused rats. Arterioscler Thromb Vasc Biol 25(11):2282–2288

    Article  CAS  PubMed  Google Scholar 

  22. Ishizaka N, Saito K, Noiri E, Sata M, Ikeda H, Ohno A, Ando J, Mori I, Ohno M, Nagai R (2005) Administration of ANG II induces iron deposition and upregulation of TGF-beta1 mRNA in the rat liver. Am J Physiol Regul Integr Comp Physiol 288(4):R1063–R1070

    Article  CAS  PubMed  Google Scholar 

  23. Ishizaka N, Saito K, Furuta K, Matsuzaki G, Koike K, Noiri E, Nagai R (2007) Angiotensin II-induced regulation of the expression and localization of iron metabolism-related genes in the rat kidney. Hypertens Res 30(2):195–202

    Article  CAS  PubMed  Google Scholar 

  24. Johnston CI (1992) Franz volhard lecture. Renin-angiotensin system: a dual tissue and hormonal system for cardiovascular control. J Hypertens 10:S13–S26

    Article  CAS  Google Scholar 

  25. Ke Y, Qian ZM (2003) Iron misregulation in the brain: a primary cause of neurodegenerative disorders. Lancet Neurol 2(4):246–453

    Article  CAS  PubMed  Google Scholar 

  26. Ke Y, Qian ZM (2007) Brain iron metabolism: neurobiology and neurochemistry. Prog Neurobiol 83(3):149–173

    Article  CAS  PubMed  Google Scholar 

  27. Ke Y, Chang YZ, Duan XL, Du JR, Zhu L, Wang K, Yang XD, Ho KP, Qian ZM (2005) Age-dependent and iron-independent expression of two mRNA isoforms of divalent metal transporter 1 in rat brain. Neurobiol Aging 26(5):739–748

    Article  CAS  PubMed  Google Scholar 

  28. Kurosaki R, Muramatsu Y, Imai Y, Kato H, Araki T (2004) Neuro-protective effect of the angiotensin-converting enzyme inhibitor perindopril in MPTP-treated mice. Neurol Res 26:644–657

    Article  CAS  PubMed  Google Scholar 

  29. Kurosaki R, Muramatsu Y, Kato H, Watanabe Y, Imai Y, Itoyama Y, Araki T (2005) Effect of angiotensin-converting enzyme inhibitor perindopril on interneurons in MPTP-treated mice. Eur Neuropsychopharmacol 15:57–67

    Article  CAS  PubMed  Google Scholar 

  30. Lippoldt A, Paul M, Fuxe K, Ganten D (1995) The brain renin–angiotensin system: molecular mechanisms of cell to cell interactions. Clin Exp Hypertens 17:251–266

    Article  CAS  PubMed  Google Scholar 

  31. Lopez-Real A, Rey P, Soto-Otero R, Mendez-Alvarez E, Labandeira-Garcia JL (2005) Angiotensin-converting enzyme inhibition reduces oxidative stress and protects dopaminergic neurons in a 6-hydroxydopamine rat model of Parkinsonism. J Neurosci Res 81(6):865–873

    Article  CAS  PubMed  Google Scholar 

  32. Mak IT, Landgraf KM, Chmielinska JJ, Weglicki WB (2012) Angiotensin II promotes iron accumulation and depresses PGI2 and NO synthesis in endothelial cells: effects of losartan and propranolol analogs. Can J Physiol Pharmacol 90(10):1413–1418

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Ohnishi T, Ohnishi ST, Shinzawa-Itoh K, Yoshikawa S, Weber RT (2012) EPR detection of two protein-associated ubiquinone components (SQ(Nf) and SQ(Ns)) in the membrane in situ and in proteoliposomes of isolated bovine heart complex I. Biochim Biophys Acta 1817(10):1803–1809

    Article  CAS  PubMed  Google Scholar 

  34. Phillips MI, Speakman EA, Kimura B (1993) Levels of angiotensin and molecular biology of the tissue renin angiotensin systems. Regul Pept 22:1–20

    Article  Google Scholar 

  35. Qian ZM, Morgan EH (1990) Effect of lead on the transport of transferrin-free and transferrin-bound iron into rabbit reticulocytes. Biochem Pharmacol 40(5):1049–1054

    Article  CAS  PubMed  Google Scholar 

  36. Qian ZM, Morgan EH (1991) Effect of metabolic inhibitors on uptake of non-transferrin-bound iron by reticulocytes. Biochim Biophys Acta 1073(3):456–462

    Article  CAS  PubMed  Google Scholar 

  37. Qian ZM, Shen X (2001) Brain iron transport and neurodegeneration. Trends Mol Med 7(3):103–108

    Article  CAS  PubMed  Google Scholar 

  38. Qian ZM, Wang Q (1998) Expression of iron transport proteins and excessive iron accumulation in the brain in neurodegenerative disorders. Brain Res Rev 27(3):257–267

    Article  CAS  PubMed  Google Scholar 

  39. Qian ZM, Tang PL, Morgan EH (1996) Effect of lipid peroxidation on transferrin-free iron uptake by rabbit reticulocytes. Biochim Biophys Acta 1310(3):293–302

    Article  PubMed  Google Scholar 

  40. Qian ZM, Wang Q, Pu Y (1997) Brain iron and neurological disorders. Chin Med J 110(6):455–458

    CAS  PubMed  Google Scholar 

  41. Rebeck GW, Harr SD, Strickland DK, Hyman BT (1995) Multiple, diverse senile plaque-associated proteins are ligands of an apolipoprotein E receptor, the alpha-macroglobulin receptor/low density lipoprotein receptor-related protein. Ann Neurol 37:211–217

    Article  CAS  PubMed  Google Scholar 

  42. Rhodes SL, Ritz B (2008) Genetics of iron regulation and the possible role of iron in Parkinson’s disease. Neurobiol Dis 32(2):183–195

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Schipper HM (1996) Astrocytes, brain aging, and neurodegeneration. Neurobiol Aging 17:467–480

    Article  CAS  PubMed  Google Scholar 

  44. Tajima S, Tsuchiya K, Horinouchi Y, Ishizawa K, Ikeda Y, Kihira Y, Shono M, Kawazoe K, Tomita S, Tamaki T (2010) Effect of angiotensin II on iron-transporting protein expression and subsequent intracellular labile iron concentration in human glomerular endothelial cells. Hypertens Res 33(7):713–721

    Article  CAS  PubMed  Google Scholar 

  45. Wang Q, Du F, Qian ZM, Ge XH, Zhu L, Yung WH, Yang L, Ke Y (2008) Lipopolysaccharide induces a significant increase in expression of iron regulatory hormone hepcidin in the cortex and substantia nigra in rat brain. Endocrinology 149(8):3920–3925

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Wright JW, Hardin JW (2004) The brain angiotensin system and extracellular matrix molecules in neural plasticity, learning, and memory. Prog Neurobiol 72:263–293

    Article  CAS  PubMed  Google Scholar 

  47. Zechel S, Huber-Wittmer K, von Bohlen und Halbach O (2006) Distribution of the iron-regulating protein hepcidin in the murine central nervous system. J Neurosci Res 84:790–800

    Article  CAS  PubMed  Google Scholar 

  48. Zhao L, Qian ZM, Zhang C, Wing HY, Du F, Ya K (2008) Amyloid beta-peptide 31–35-induced neuronal apoptosis is mediated by caspase-dependent pathways via cAMP-dependent protein kinase A activation. Aging Cell 7(1):47–57

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The studies in our laboratories were supported by the Competitive Earmarked Grants of The Hong Kong Research Grants Council (GRF 466713), National 973 Programs (2011CB510004), the General Grant of National Natural Science Foundation of China (NSFC) (31271132-2012, 31371092-2013), Key Project Grant of NSFC (31330035-2013) and Direct Grant of the Chinese University of Hong Kong (2011.1.084).

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-ming Qian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Huang, S., Du, F. et al. Angiotensin II Inhibits Iron Uptake and Release in Cultured Neurons. Neurochem Res 39, 893–900 (2014). https://doi.org/10.1007/s11064-014-1285-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-014-1285-3

Keywords

Navigation