Skip to main content

Advertisement

Log in

Dynamic Change of Hydrogen Sulfide After Traumatic Brain Injury and its Effect in Mice

  • Original paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Hydrogen sulfide (H2S) is a lipid-soluble, endogenously produced gaseous messenger molecule collectively known as gasotransmitter. Over the last several decades, gasotransmitters have emerged as potent cytoprotective mediators in various models of tissue and cellular injury. In this study, we performed a weight-drop traumatic brain injury (TBI) model in adult mice and investigated changes of H2S and its possible role in the pathogenesis after TBI. Expression of Cystathionine-β-synthase (CBS) mRNA as H2S-producing enzymes in mouse brain was determined by reverse transcriptase-polymerase chain reaction (RT-PCR). From the results of RT-PCR, it was found that the expression of CBS was down-regulated in mouse brain cortex and hippocampus after brain injury. Western blot analysis revealed that CBS was present in normal mouse brain cortex and the hippocampus. It gradually decreased, reached its lowest level and then increased. Hydrogen sulfide in the cortex and hippocampus exhibited dynamic changes after brain injury, in parallel with CBS mRNA and protein expression. Moreover, pretreatment with the H2S donor (NaHS) could protect the neuron against the injury induced by TBI. Noticeably, the H2S donor NaHS could reduce TBI-induced injury assessed with lesion volume. These data suggested that H2S may have a therapeutic potential against neuron damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Werner C, Engelhard K (2007) Pathophysiology of traumatic brain injury. Br J Anaesth 99:4–9

    Article  PubMed  CAS  Google Scholar 

  2. Greve MW, Zink BJ (2009) Pathophysiology of traumatic brain injury. Mount Sinai J Med New York 76:97–104

    Article  Google Scholar 

  3. Zhao J, Pati S, Redell JB et al (2012) Caffeic acid phenethyl ester protects blood–brain barrier integrity and reduces contusion volume in rodent models of traumatic brain injury. J Neurotrauma 29:1209–1218

    Article  PubMed  Google Scholar 

  4. Sande A, West C (2010) Traumatic brain injury: a review of pathophysiology and management. J Vet Emerg Crit Care 20:177–190

    Article  Google Scholar 

  5. McAllister TW (2008) Neurobehavioral sequelae of traumatic brain injury: evaluation and management. World Psychiatry 7:3–10

    PubMed  Google Scholar 

  6. McAllister TW (2011) Neurobiological consequences of traumatic brain injury. Dialogues Clin Neurosci 13:287–300

    PubMed  Google Scholar 

  7. Dash PK, Johnson D, Clark J et al (2011) Involvement of the glycogen synthase kinase-3 signaling pathway in TBI pathology and neurocognitive outcome. PLoS ONE 6:e24648

    Article  PubMed  CAS  Google Scholar 

  8. Feeser VR, Loria RM (2011) Modulation of traumatic brain injury using progesterone and the role of glial cells on its neuroprotective actions. J Neuroimmunol 237:4–12

    Article  PubMed  CAS  Google Scholar 

  9. Huang T, Solano J, He D et al (2009) Traumatic injury activates MAP kinases in astrocytes: mechanisms of hypothermia and hyperthermia. J Neurotrauma 26:1535–1545

    Article  PubMed  Google Scholar 

  10. Stoica BA, Faden AI (2010) Cell death mechanisms and modulation in traumatic brain injury. Neurotherapeutics 7:3–12

    Article  PubMed  CAS  Google Scholar 

  11. Kimura H (2010) Hydrogen sulfide: from brain to gut. Antioxid Redox Signal 12:1111–1123

    Article  PubMed  CAS  Google Scholar 

  12. Abe K, Kimura H (1996) The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci 16:1066–1071

    PubMed  CAS  Google Scholar 

  13. Goodwin LR, Francom D, Dieken FP et al (1989) Determination of sulfide in brain tissue by gas dialysis/ion chromatography: postmortem studies and two case reports. J Anal Toxicol 13:105–109

    PubMed  CAS  Google Scholar 

  14. Robert K, Vialard F, Thiery E et al (2003) Expression of the cystathionine beta synthase (CBS) gene during mouse development and immunolocalization in adult brain. J Histochem Cytochem 51:363–371

    Article  PubMed  CAS  Google Scholar 

  15. Enokido Y, Suzuki E, Iwasawa K et al (2005) Cystathionine beta-synthase, a key enzyme for homocysteine metabolism, is preferentially expressed in the radial glia/astrocyte lineage of developing mouse CNS. FASEB J 19:1854–1856

    PubMed  CAS  Google Scholar 

  16. Awata S, Nakayama K, Sato A et al (1993) Changes in cystathionine gamma-lyase levels in rat liver during lactation. Biochem Mol Biol Int 31:185–191

    PubMed  CAS  Google Scholar 

  17. Qu K, Chen CP, Halliwell B et al (2006) Hydrogen sulfide is a mediator of cerebral ischemic damage. Stroke 37:889–893

    Article  PubMed  CAS  Google Scholar 

  18. Awata S, Nakayama K, Suzuki I et al (1995) Changes in cystathionine gamma-lyase in various regions of rat brain during development. Biochem Mol Biol Int 35:1331–1338

    PubMed  CAS  Google Scholar 

  19. Nagai Y, Tsugane M, Oka J et al (2004) Hydrogen sulfide induces calcium waves in astrocytes. FASEB J 18:557–559

    PubMed  CAS  Google Scholar 

  20. Geng B, Chang L, Pan C et al (2004) Endogenous hydrogen sulfide regulation of myocardial injury induced by isoproterenol. Biochem Biophys Res Commun 318:756–763

    Article  PubMed  CAS  Google Scholar 

  21. Han Y, Qin J, Chang X et al (2005) Modulating effect of hydrogen sulfide on gamma-aminobutyric acid B receptor in recurrent febrile seizures in rats. Neurosci Res 53:216–219

    Article  PubMed  CAS  Google Scholar 

  22. Lee SW, Hu YS, Hu LF et al (2006) Hydrogen sulphide regulates calcium homeostasis in microglial cells. Glia 54:116–124

    Article  PubMed  Google Scholar 

  23. Tay AS, Hu LF, Lu M et al (2010) Hydrogen sulfide protects neurons against hypoxic injury via stimulation of ATP-sensitive potassium channel/protein kinase C/extracellular signal-regulated kinase/heat shock protein 90 pathway. Neuroscience 167:277–286

    Article  PubMed  CAS  Google Scholar 

  24. Hu LF, Lu M, Wu ZY et al (2009) Hydrogen sulfide inhibits rotenone-induced apoptosis via preservation of mitochondrial function. Mol Pharmacol 75:27–34

    Article  PubMed  CAS  Google Scholar 

  25. Liu YY, Sparatore A, Del Soldato P et al (2011) ACS84, a novel hydrogen sulfide-releasing compound, protects against amyloid beta-induced cell cytotoxicity. Neurochem Int 58:591–598

    Article  PubMed  CAS  Google Scholar 

  26. Liu YY, Bian JS (2010) Hydrogen sulfide protects amyloid-beta induced cell toxicity in microglia. J Alzheimer’s Dis 22:1189–1200

    CAS  Google Scholar 

  27. Schreier SM, Muellner MK, Steinkellner H et al (2010) Hydrogen sulfide scavenges the cytotoxic lipid oxidation product 4-HNE. Neurotox Res 17:249–256

    Article  PubMed  CAS  Google Scholar 

  28. Tang XQ, Shen XT, Huang YE et al (2010) Hydrogen sulfide antagonizes homocysteine-induced neurotoxicity in PC12 cells. Neurosci Res 68:241–249

    Article  PubMed  CAS  Google Scholar 

  29. Yin WL, He JQ, Hu B et al (2009) Hydrogen sulfide inhibits MPP(+)-induced apoptosis in PC12 cells. Life Sci 85:269–275

    Article  PubMed  CAS  Google Scholar 

  30. Xie L, Tiong CX, Bian JS (2012) Hydrogen sulfide protects SH-SY5Y cells against 6-hydroxydopamine-induced endoplasmic reticulum stress. Am J Physiol Cell Physiol 303:C81–C91

    Article  PubMed  CAS  Google Scholar 

  31. Shao JL, Wan XH, Chen Y et al (2011) H2S protects hippocampal neurons from anoxia-reoxygenation through cAMP-mediated PI3 K/Akt/p70S6 K cell-survival signaling pathways. J Mol Neurosci 43:453–460

    Article  PubMed  CAS  Google Scholar 

  32. Meng JL, Mei WY, Dong YF et al (2011) Heat shock protein 90 mediates cytoprotection by H(2)S against chemical hypoxia-induced injury in PC12 cells. Clin Exp Pharmacol Physiol 38:42–49

    Article  PubMed  CAS  Google Scholar 

  33. Qin ZH, Chen RW, Wang Y et al (1999) Nuclear factor kappaB nuclear translocation upregulates c-Myc and p53 expression during NMDA receptor-mediated apoptosis in rat striatum. J Neurosci 19:4023–4033

    PubMed  CAS  Google Scholar 

  34. Feeney DM, Boyeson MG, Linn RT et al (1981) Responses to cortical injury: I. Methodology and local effects of contusions in the rat. Brain Res 211:67–77

    Article  PubMed  CAS  Google Scholar 

  35. Luo CL, Chen XP, Yang R et al (2010) Cathepsin B contributes to traumatic brain injury-induced cell death through a mitochondria-mediated apoptotic pathway. J Neurosci Res 88:2847–2858

    PubMed  CAS  Google Scholar 

  36. Kimura H (2000) Hydrogen sulfide induces cyclic AMP and modulates the NMDA receptor. Biochem Biophys Res Commun 267:129–133

    Article  PubMed  CAS  Google Scholar 

  37. Luo CL, Li BX, Li QQ et al (2011) Autophagy is involved in traumatic brain injury-induced cell death and contributes to functional outcome deficits in mice. Neuroscience 184:54–63

    Article  PubMed  CAS  Google Scholar 

  38. Zhang M, Shan H, Gu Z et al (2012) Increased expression of calcium/calmodulin-dependent protein kinase type II subunit delta after rat traumatic brain injury. J Mol Neurosci 46:631–643

    Article  PubMed  CAS  Google Scholar 

  39. Ishigami M, Hiraki K, Umemura K et al (2009) A source of hydrogen sulfide and a mechanism of its release in the brain. Antioxid Redox Signal 11:205–214

    Article  PubMed  CAS  Google Scholar 

  40. Shibuya N, Tanaka M, Yoshida M et al (2009) 3-Mercaptopyruvate sulfurtransferase produces hydrogen sulfide and bound sulfane sulfur in the brain. Antioxid Redox Signal 11:703–714

    Article  PubMed  CAS  Google Scholar 

  41. McIntosh TK, Faden AI, Bendall MR et al (1987) Traumatic brain injury in the rat: alterations in brain lactate and pH as characterized by 1H and 31P nuclear magnetic resonance. J Neurochem 49:1530–1540

    Article  PubMed  CAS  Google Scholar 

  42. Plesnila N, Haberstok J, Peters J et al (1999) Effect of lactacidosis on cell volume and intracellular pH of astrocytes. J Neurotrauma 16:831–841

    Article  PubMed  CAS  Google Scholar 

  43. Shono Y, Kamouchi M, Kitazono T et al (2010) Change in intracellular pH causes the toxic Ca2+ entry via NCX1 in neuron- and glia-derived cells. Cell Mol Neurobiol 30:453–460

    Article  PubMed  CAS  Google Scholar 

  44. Kimura H (2011) Hydrogen sulfide: its production, release and functions. Amino Acids 41:113–121

    Article  PubMed  CAS  Google Scholar 

  45. Renga B (2011) Hydrogen sulfide generation in mammals: the molecular biology of cystathionine-beta-synthase (CBS) and cystathionine-gamma-lyase (CSE). Inflamm Allergy Drug Targets 10:85–91

    Article  PubMed  CAS  Google Scholar 

  46. Ignoul S, Eggermont J (2005) CBS domains: structure, function, and pathology in human proteins. Am J Physiol Cell Physiol 289:C1369–C1378

    Article  PubMed  CAS  Google Scholar 

  47. Tang B, Mustafa A, Gupta S et al (2010) Methionine-deficient diet induces post-transcriptional downregulation of cystathionine beta-synthase. Nutrition 26:1170–1175

    Article  PubMed  CAS  Google Scholar 

  48. Ratnam S, Maclean KN, Jacobs RL et al (2002) Hormonal regulation of cystathionine beta-synthase expression in liver. J Biol Chem 277:42912–42918

    Article  PubMed  CAS  Google Scholar 

  49. Goldstein JL, Campbell BK, Gartler SM (1972) Cystathionine synthase activity in human lymphocytes: induction by phytohemagglutinin. J Clin Invest 51:1034–1037

    Article  PubMed  CAS  Google Scholar 

  50. Maclean KN, Gaustadnes M, Oliveriusova J et al (2002) High homocysteine and thrombosis without connective tissue disorders are associated with a novel class of cystathionine beta-synthase (CBS) mutations. Hum Mutat 19:641–655

    Article  PubMed  CAS  Google Scholar 

  51. Lee M, Schwab C, Yu S et al (2009) Astrocytes produce the antiinflammatory and neuroprotective agent hydrogen sulfide. Neurobiol Aging 30:1523–1534

    Article  PubMed  CAS  Google Scholar 

  52. Ray SK, Dixon CE, Banik NL (2002) Molecular mechanisms in the pathogenesis of traumatic brain injury. Histol Histopathol 17:1137–1152

    PubMed  CAS  Google Scholar 

  53. Lagraoui M, Latoche JR, Cartwright NG et al (2012) Controlled cortical impact and craniotomy induce strikingly similar profiles of inflammatory gene expression, but with distinct kinetics. Front Neurol 3:155

    Article  PubMed  Google Scholar 

  54. Scheff SW, Ansari MA, Roberts KN (2012) Neuroprotective effect of Pycnogenol(R) following traumatic brain injury. Exp Neurol 239C:183–191

    Google Scholar 

  55. Banerjee R, Zou CG (2005) Redox regulation and reaction mechanism of human cystathionine-beta-synthase: a PLP-dependent hemesensor protein. Arch Biochem Biophys 433:144–156

    Article  PubMed  CAS  Google Scholar 

  56. Vitvitsky V, Thomas M, Ghorpade A et al (2006) A functional transsulfuration pathway in the brain links to glutathione homeostasis. J Biol Chem 281:35785–35793

    Article  PubMed  CAS  Google Scholar 

  57. Zhong WX, Wang YB, Peng L et al (2012) Lanthionine synthetase C-like PROTEIN 1 Interacts with and inhibits cystathionine beta-synthase: a target for neuronal antioxidant defense. J Biol Chem 287:34189–34201

    Article  PubMed  CAS  Google Scholar 

  58. Rhoads AR, Friedberg F (1997) Sequence motifs for calmodulin recognition. FASEB J 11:331–340

    PubMed  CAS  Google Scholar 

  59. Eto K et al (2002) Hydrogen sulfide is produced in response to neuronal excitation. J Neurosci 22:3386–3391

    PubMed  CAS  Google Scholar 

  60. Folkerts MM, Parks EA, Dedman JR et al (2007) Phosphorylation of calcium calmodulin-dependent protein kinase II following lateral fluid percussion brain injury in rats. J Neurotrauma 24:638–650

    Article  PubMed  Google Scholar 

  61. Osipov RM, Robich MP, Feng J et al (2009) Effect of hydrogen sulfide in a porcine model of myocardial ischemia-reperfusion: comparison of different administration regimens and characterization of the cellular mechanisms of protection. J Cardiovasc Pharmacol 54:287–297

    Article  PubMed  CAS  Google Scholar 

  62. Sodha NR, Clements RT, Feng J et al (2008) The effects of therapeutic sulfide on myocardial apoptosis in response to ischemia-reperfusion injury. Eur J Cardiothorac Surg 33:906–913

    Article  PubMed  Google Scholar 

  63. Quintana M, Kahan T, Hjemdahl P (2004) Pharmacological prevention of reperfusion injury in acute myocardial infarction. A potential role for adenosine as a therapeutic agent. Am J Cardiovasc Drugs 4:159–167

    Article  PubMed  CAS  Google Scholar 

  64. Bian JS, Yong QC, Pan TT et al (2006) Role of hydrogen sulfide in the cardioprotection caused by ischemic preconditioning in the rat heart and cardiac myocytes. J Pharmacol Exp Ther 316:670–678

    Article  PubMed  CAS  Google Scholar 

  65. Kimura Y, Kimura H (2004) Hydrogen sulfide protects neurons from oxidative stress. FASEB J 18:1165–1167

    PubMed  CAS  Google Scholar 

  66. Elrod JW, Calvert JW, Morrison J et al (2007) Hydrogen sulfide attenuates myocardial ischemia-reperfusion injury by preservation of mitochondrial function. Proc Natl Acad Sci USA 104:15560–15565

    Article  PubMed  CAS  Google Scholar 

  67. Kimura Y, Dargusch R, Schubert D et al (2006) Hydrogen sulfide protects HT22 neuronal cells from oxidative stress. Antioxid Redox Signal 8:661–670

    Article  PubMed  CAS  Google Scholar 

  68. Tyagi N, Moshal KS, Sen U et al (2009) H2S protects against methionine-induced oxidative stress in brain endothelial cells. Antioxid Redox Signal 11:25–33

    Article  PubMed  CAS  Google Scholar 

  69. Ji Y, Pang QF, Xu G et al (2008) Exogenous hydrogen sulfide postconditioning protects isolated rat hearts against ischemia-reperfusion injury. Eur J Pharmacol 587:1–7

    Article  PubMed  CAS  Google Scholar 

  70. Ren C, Du A, Li D et al (2010) Dynamic change of hydrogen sulfide during global cerebral ischemia-reperfusion and its effect in rats. Brain Res 1345:197–205

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 30872666, No. 81172911 and No. 81271379); Natural Science Foundation of Medical College of Nantong University (No.Y201003); The Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD); The Colleges and Universities in Jiangsu Province Plans to Graduate Research and Innovation (CXLX12_0824).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiping Chen or Luyang Tao.

Additional information

Mingyang Zhang and Haiyan Shan contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, M., Shan, H., Wang, T. et al. Dynamic Change of Hydrogen Sulfide After Traumatic Brain Injury and its Effect in Mice. Neurochem Res 38, 714–725 (2013). https://doi.org/10.1007/s11064-013-0969-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-013-0969-4

Keywords

Navigation