Skip to main content
Log in

Increased Levels of Monoamine-Derived Potential Neurotoxins in Fetal Rat Brain Exposed to Ethanol

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Pregnant SD rats were exposed to ethanol (25 % (v/v) ethanol at 1.0, 2.0 or 4.0 g/kg body weight from GD8 to GD20) to assess whether ethanol-derived acetaldehyde could interact with endogenous monoamine to generate tetrahydroisoquinoline or tetrahydro-beta-carboline in the fetuses. The fetal brain concentration of acetaldehyde increased remarkably after ethanol administration (2.6 times, 5.3 times and 7.8 times as compared to saline control in 1.0, 2.0 and 4.0 g/kg ethanol-treated groups, respectively) detected by HPLC with 2,4-dinitrophenylhydrazine derivatization. Compared to control, ethanol exposure induced the formation of 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (salsolinol, Sal), N-methyl-salsolinol (NMSal) and 1-methyl-6-hydroxy-1,2,3,4-tetrahydro-beta-carboline (6-OH-MTHBC) in fetal rat brains. Determined by HPLC with electrochemical detector, the levels of dopamine and 5-hydroxytryptamine in whole fetal brain were not remarkably altered by ethanol treatment, while the levels of homovanillic acid and 5-hydroxyindole acetic acid in high dose (4.0 g/kg) of ethanol-treated rats were significantly decreased compared to that in the control animals. 4.0 g/kg ethanol administration inhibited the activity of mitochondrial monoamine oxidase (51.3 % as compared to control) and reduced the activity of respiratory chain complex I (61.2 % as compared to control). These results suggested that ethanol-induced alteration of monoamine metabolism and the accumulation of dopamine-derived catechol isoquinolines and 5-hydroxytryptamine-derived tetrahydro-beta-carbolines may play roles in the developmental dysfuction of monoaminergic neuronal systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Deehan GJ, Brodie MS, Rodd ZA (2013) What is in that drink: the biological actions of ethanol, acetaldehyde, and salsolinol. Curr Top Behav Neurosci 13:163–184

    Article  PubMed  Google Scholar 

  2. Eriksson CJP (2001) The role of acetaldehyde in the actions of alcohol. Alcohol Clin Exp Res 25:15S–32S

    Article  PubMed  CAS  Google Scholar 

  3. Ikonomidou C, Bittigau P, Ishimaru MJ, Wozniak DF, Koch C, Genz K, Price MT, Stefovska V, Horster F, Tenkova T, Dikranian K, Olney JW (2000) Ethanol-induced apoptotic neurodegeneration and fetal alcohol syndrome. Science 287:1056–1060

    Article  PubMed  CAS  Google Scholar 

  4. Nixon K (2006) Alcohol and adult neurogenesis: roles in neurodegeneration and recovery in chronic alcoholism. Hippocampus 16:287–295

    Article  PubMed  CAS  Google Scholar 

  5. Wozniak DF, Hartman RE, Boyle MP, Vogt SK, Brooks AR, Tenkova T, Young C, Olney JW, Muglia LJ (2004) Apoptotic neurodegeneration induced by ethanol in neonatal mice is associated with profound learning/memory deficits in juveniles followed by progressive functional recovery in adults. Neurobiol Dis 17:403–414

    Article  PubMed  CAS  Google Scholar 

  6. Dikranian K, Qin Y, Labruyere J, Nemmersa B, Olney JW (2005) Ethanol-induced neuroapoptosis in the developing rodent cerebellum and related brain stem structures. Dev Brain Res 155:1–13

    Article  CAS  Google Scholar 

  7. Heaton MB, Madorsky I, Paiva M, Siler-Marsiglio KI (2004) Ethanol-induced reduction of neurotrophin secretion in neonatal rat cerebellar granule cells is mitigated by vitamin E. Neurosci Lett 370:51–54

    Article  PubMed  CAS  Google Scholar 

  8. Heaton MB, Paiva M, Kubovic S, Kotler A, Rogozinski J, Swanson E, Madorsky V, Posados M (2012) Differential effects of ethanol on c-jun N-terminal kinase, 14–3-3 proteins, and Bax in postnatal day 4 and postnatal day 7 rat cerebellum. Brain Res 1432:15–27

    Article  PubMed  CAS  Google Scholar 

  9. Peng Y, Kwok KHH, Yang P, Samuel SMN, Liu J, Wong OG, He M, Kung H, Marie CML (2005) Ascorbic acid inhibits ROS production, NF-kB activation and prevents ethanol-induced growth retardation and microencephaly. Neuropharmacology 48:426–434

    Article  PubMed  CAS  Google Scholar 

  10. Ikonomidoua C, Bittigaua P, Kocha C, Genz K, Hoerster F, Felderhoff-Mueser U, Tenkova T, Dikranian K, Olney JW (2001) Neurotransmitters and apoptosis in the developing brain. Biochem Pharmacol 62:401–405

    Article  Google Scholar 

  11. Heaton MB, Paiva M, Mayer J, Miller R (2002) Ethanol-mediated generation of reactive oxygen species in developing rat cerebellum. Neurosci Lett 334:83–86

    Article  PubMed  CAS  Google Scholar 

  12. Minana R, Climent E, Barettino D, Segui JM, Renau-Piqueras J, Guerri C (2000) Alcohol exposure alters the expression pattern of neural cell adhesion molecules during brain development. J Neurochem 75:954–964

    Article  PubMed  CAS  Google Scholar 

  13. Pawlak R, Skrzypiec A, Sulkowski S, Buczko W (2002) Ethanol-induced neurotoxicity is counterbalanced by increased cell proliferation in mouse dentate gyrus. Neurosci Lett 327:83–86

    Article  PubMed  CAS  Google Scholar 

  14. Shea KM, Hewitt AJ, Olmstead MC, Brien JF, Reynolds JN (2012) Maternal ethanol consumption by pregnant guinea pigs causes neurobehavioral deficits and increases ethanol preference in offspring. Behav Pharmacol 23:105–112

    Article  PubMed  Google Scholar 

  15. Maas JW Jr, Vogt SK, Chan GC, Pineda VV, Storm DR, Muglia LJ (2005) Calcium-stimulated adenylyl cyclases are critical modulators of neuronal ethanol sensitivity. J Neurosci 25:4118–4126

    Article  PubMed  CAS  Google Scholar 

  16. Singh AK, Gupta S, Jiang Y, Younus M, Ramzan M (2009) In vitro neurogenesis from neural progenitor cells isolated from the hippocampus region of the brain of adult rats exposed to ethanol during early development through their alcohol-drinking mothers. Alcohol Alcohol 44:185–198

    PubMed  CAS  Google Scholar 

  17. Quertemont E, Tambour S, Tirelli E (2005) The role of acetaldehyde in the neurobehavioral effects of ethanol: a comprehensive review of animal studies. Prog Neurobiol 75:247–274

    Article  PubMed  CAS  Google Scholar 

  18. Hipólito L, Sánchez-Catalán MJ, Martí-Prats L, Granero L, Polache A (2012) Revisiting the controversial role of salsolinol in the neurobiological effects of ethanol: old and new vistas. Neurosci Biobehav Rev 36:362–378

    Article  PubMed  Google Scholar 

  19. Wrona MZ, Waskiewicz J, Han Q, Han J, Li H, Dryhurst G (1997) Putative oxidative metabolites of 1-methyl-6-hydroxy-1,2,3,4-tetrahydro-β-carboline of potential relevance to the addictive and neurodegenerative consequences of ethanol abuse. Alcohol 14:213–223

    Article  PubMed  CAS  Google Scholar 

  20. Hipólito L, Sánchez-Catalán MJ, Granero L, Polache A (2009) Local salsolinol modulates dopamine extracellular levels from rat nucleus accumbens: shell/core differences. Neurochem Int 55:187–192

    Article  PubMed  Google Scholar 

  21. Collins MA, Bigdeli MG (1975) Tetrahydroisoquinolines in vivo. I. Rat brain formation of salsolinol, a condensation product of dopamine and acetaldehyde, under certain conditions during ethanol intoxication. Life Sci 16:585–601

    PubMed  CAS  Google Scholar 

  22. Gerlach M, Koutsilieri E, Riederer P (1998) N-methyl-(R)-salsolinol and its relevance to Parkinson’s disease. Lancet 351:850–851

    Article  PubMed  CAS  Google Scholar 

  23. Clow A, Topham A, Saunders JB, Murray R, Sandler M (1985) The role of salsolinol in alcohol intake and withdrawal. Prog Clin Biol Res 183:101–113

    PubMed  CAS  Google Scholar 

  24. Deng Y, Luan Y, Qing H, Xie H, Lu J, Zhou J (2008) The formation of catechol isoquinolines in PC12 cells exposed to manganese. Neurosci Lett 444:122–126

    Article  PubMed  CAS  Google Scholar 

  25. Lee J, Huang BX, Yuan Z, Kim HY (2007) Simultaneous determination of salsolinol enantiomers and dopamine in human plasma and cerebrospinal fluid by chemical derivatization coupled to chiral liquid chromatography/electrospray ionization-tandem mass spectrometry. Anal Chem 79:9166–9173

    Article  PubMed  CAS  Google Scholar 

  26. Jamal M, Ameno K, Kubota T, Ameno S, Zhang X, Kumihashi M, Ijiri I (2003) In vivo formation of salsolinol induced by high acetaldehyde concentration in rat striatum employing microdialysis. Alcohol Alcohol 38:197–201

    PubMed  CAS  Google Scholar 

  27. Sjöquist B, Liljequist S, Engel J (1982) Increased salsolinol levels in rat striatum and limbic forebrain following chronic ethanol treatment. J Neurochem 39:259–262

    Article  PubMed  Google Scholar 

  28. Jamal M, Ameno K, Ameno S, Okada N, Ijiri I (2003) In vivo study of salsolinol produced by a high concentration of acetaldehyde in the striatum and nucleus accumbens of free-moving rats. Alcohol Clin Exp Res 27:79S–84S

    Article  PubMed  CAS  Google Scholar 

  29. Beck O, Bosin TR, Lundman A, Borg S (1982) Identification and measurement of 6-hydroxy-l-methyl-l,2,3,4-tetrahydro-β-carboline by gas chromatography-mass spectrometry. Biochem Pharmacol 31:2517–2521

    Article  PubMed  CAS  Google Scholar 

  30. Zhang F, Goyal RN, Blank CL, Dryhurst G (1992) Oxidation chemistry and biochemistry of the central mammalian alkaloid 1-methyl-6-hydroxy-1,2,3,4-tetrahydro-β-carboline. J Med Chem 35:82–93

    Article  PubMed  CAS  Google Scholar 

  31. Han Q, Dryhurst G (1996) Influence of glutathione on the oxidation of 1-methyl-6-hydroxy- 1,2,3,4-tetrahydro-β-carboline: chemistry of potential relevance to the addictive and neurodegenerative consequences of ethanol abuse. J Med Chem 39:1494–1508

    Article  PubMed  CAS  Google Scholar 

  32. Mao J, Xu Y, Deng Y, Lin F, Xie B, Wang R (2010) Determination of acetaldehyde, salsolinol and 6-hydroxy-1-methyl-1,2,3,4-tetrahydro-β-carboline in brains after acute ethanol administration to neonatal rats. Chin J Anal Chem 38:1789–1792

    Article  CAS  Google Scholar 

  33. Tran TD, Cronise K, Marino MD, Jenkins WJ, Kelly SJ (2000) Critical periods for the effects of alcohol exposure on brain weight, body weight, activity and investigation. Behav Brain Res 116:99–110

    Article  PubMed  CAS  Google Scholar 

  34. Teitel S, O’ Brien J, Brossi A (1972) Alkaloids in mammalian tissue: 2. Synthesis of (+) - and (-) -/- substituted-6,7-dihydroxy-1,2,3,4- tetrahydroisoquinolines. J Med Chem 15:845–846

    Article  PubMed  CAS  Google Scholar 

  35. Soto-Otero R, Mendez-Alvarez E, Hermida-Ameijeiras A, Sanchez-Sellero I, Cruz-Landeira A, Lamas ML (2001) Inhibition of brain monoamine oxidase activity by the generation of hydroxyl radicals-potential implications in relation to oxidative stress. Life Sci 69:879–889

    Article  PubMed  CAS  Google Scholar 

  36. Herraiz T, Chaparro C (2006) Analysis of monoamine oxidase enzymatic activity by reversed-phase high performance liquid chromatography and inhibition by β-carboline alkaloids occurring in foods and plants. J Chromatogra A 1120:237–243

    Article  CAS  Google Scholar 

  37. Xu Y, Liu P, Li Y (2005) Impaired development of mitochondria plays a role in the central nervous system defects of fetal alcohol syndrome. Birth Defects Res A 73:83–91

    Article  CAS  Google Scholar 

  38. Wanpen S, Govitrapong P, Shavali S, Sangchot P, Ebadi M (2004) Salsolinol, a dopamine-derived tetrahydroisoquinoline, induces cell death by causing oxidative stress in dopaminergic SH-SY5Y cells, and the said effect is attenuated by metallothionein. Brain Res 1005:67–76

    Article  PubMed  CAS  Google Scholar 

  39. Maruyama W, Benedetti MS, Takahashi T, Naoi M (1997) A neurotoxin N-methyl (R) -salsolinol induces apoptotic cell death in differentiated human dopaminergic neuroblastoma SH-SY5Y cells. Neurosci Lett 232:147–150

    Article  PubMed  CAS  Google Scholar 

  40. Naoi M, Maruyama W, Akao Y, Zhang J, Paryez H (2000) Apoptosis induced by an endogenous neurotoxin, N-methyl (R) salsolinol, in dopamine neurons. Toxicology 153:123–141

    Article  PubMed  CAS  Google Scholar 

  41. Hamby-Mason R, Chen J, Schenker S, Perez A, Henderson GI (1997) Catalase mediates acetaldehyde formation from ethanol in fetal and neonatal rat brain. Alcohol Clin Exp Res 21:1063–1072

    Article  PubMed  CAS  Google Scholar 

  42. Jamal M, Ameno K, Uekita I, Kumihashi M, Wang W, Ijiri I (2007) Catalase mediates acetaldehyde formation in the striatum of free-moving rats. Neurotoxicology 28:1245–1248

    Article  PubMed  CAS  Google Scholar 

  43. Okonmah AD, Brown JW, Owasoyo JO, Soliman KF (1988) Alterations of fetal brain biogenic amine metabolites by maternal ethanol exposure. Gen Pharmacol 19:589–593

    Article  PubMed  CAS  Google Scholar 

  44. Musshoff F (2002) Chromatographic methods for the determination of markers of chronic and acute alcohol consumption. J Chromatogr B 781:457–480

    Article  CAS  Google Scholar 

  45. Storch A, Kaftan A, Burkhardt K, Schwarz J (2000) 1-Methyl-6,7-dihydroxy-1,2,3,4- tetrahydroisoquinoline (salsolinol) is toxic to dopaminergic neuroblastoma SH-SY5Y cells via impairment of cellular energy metabolism. Brain Res 855:67–75

    Article  PubMed  CAS  Google Scholar 

  46. Naoi M, Maruyama W, Nagy GM (2004) Dopamine-derived salsolinol derivatives as endogenous monoamine oxidase inhibitors: occurrence, metabolism and function in human brains. Neurotoxicology 25:193–204

    Article  PubMed  CAS  Google Scholar 

  47. Patsenka A, Antkiewicz-Michaluk L (2004) Inhibition of rodent brain monoamine oxidase and tyrosine hydroxylase by endogenous compounds-1,2,3,4-tetrahydroisoquinoline alkaloids. Pol J Pharmacol 56:727–734

    PubMed  CAS  Google Scholar 

  48. Nesterick CA, Rahwan RG (1981) Absence of a role for salsolinol in the mechanism of ethanol teratogenicity. Dev Pharmacol Ther 3:99–107

    PubMed  CAS  Google Scholar 

  49. Sari Y, Hammad LA, Saleh MM, Rebec GV, Mechref Y (2010) Alteration of selective neurotransmitters in fetal brains of prenatally alcohol-treated C57BL/6 mice: quantitative analysis using liquid chromatography/tandem mass spectrometry. Int J Dev Neurosci 28:263–269

    Article  PubMed  CAS  Google Scholar 

  50. Bonthius DJ, Luong T, Bonthius NE, Hostager BS, Karacay B (2009) Nitric oxide utilizes NF-κB to signal its neuroprotective effect against alcohol toxicity. Neuropharmacology 56:716–731

    Article  PubMed  CAS  Google Scholar 

  51. Heaton MB, Paiva M, Madorsky I, Mayer J, Mooreb DB (2003) Effects of ethanol on neurotrophic factors, apoptosis-related proteins, endogenous antioxidants, and reactive oxygen species in neonatal striatum: relationship to periods of vulnerability. Dev Brain Res 140:237–252

    Article  CAS  Google Scholar 

  52. Jamal M, Ameno K, Ameno S, Okada N, Ijiri I (2003) Effect of different doses of cyanamide on striatal salsolinol formation after ethanol treatment. Legal Med 5:S79–S82

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the support from the Ministry of Industry and Information, China (No. A2220060002), and partially support from the Presidential Science and Technology Development Foundation of ZTRI, China (No. 412011CA0280).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulin Deng.

Additional information

Jian Mao, Hong Ma and Yan Xu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mao, J., Ma, H., Xu, Y. et al. Increased Levels of Monoamine-Derived Potential Neurotoxins in Fetal Rat Brain Exposed to Ethanol. Neurochem Res 38, 356–363 (2013). https://doi.org/10.1007/s11064-012-0926-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-012-0926-7

Keywords

Navigation