Skip to main content
Log in

Bovine Brain Myelin Glycerophosphocholine Choline Phosphodiesterase is an Alkaline Lysosphingomyelinase of the eNPP-Family, Regulated by Lysosomal Sorting

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Glycerophosphocholine choline phosphodiesterase (GPC-Cpde) is a glycosylphosphatidylinositol (GPI)-anchored alkaline hydrolase that is expressed in the brain and kidney. In brain the hydrolase is synthesized by the oligodendrocytes and expressed on the myelin membrane. There are two forms of brain GPC-Cpde, a membrane-linked (mGPC-Cpde) and a soluble (sGPC-Cpde). Here we report the characterisation sGPC-Cpde from bovine brain. The amino acid sequence was identical to ectonucleotide pyrophosphatase/phosphodiesterase 6 (eNPP6) precursor, lacking the N-terminal signal peptide region and a C-terminal stretch, suggesting that the hydrolase was solubilised by C-terminal proteolysis, releasing the GPI-anchor. sGPC-Cpde existed as two isoforms, a homodimer joined by a disulfide bridge linking C414 from each monomer, and a monomer resulting from proteolysis N-terminally to this disulfide bond. The only internal disulfide bridge, linking C142 and C154, stabilises the choline-binding pocket. sGPC-Cpde was specific for lysosphingomyelin, displaying 1 to 2 orders of magnitude higher catalytic activity than towards GPC and lysophosphatidylcholine, suggesting that GPC-Cpde may function in the sphingomyelin signaling, rather than in the homeostasis of acylglycerophosphocholine metabolites. The truncated high mannose and bisected hybrid type glycans linked to N118 and N341 of sGPC-Cpde is a hallmark of glycans in lysosomal glycoproteins, subjected to GlcNAc-1-phosphorylation en route through Golgi. Thus, sGPC-Cpde may originate from the lysosomes, suggesting that lysosomal sorting contributes to the level of mGPC-Cpde on the myelin membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

LPC:

Lysophosphatidylcholine

SPC:

Lysosphingomyelin

GPC:

Glycerophosphocholine

GPC-Cpde:

Glycerophosphocholine choline phosphodiesterase (EC 3.1.4.38)

PLC:

Phospholipase C

eNPP:

Ectonucleotide pyrophosphatase/phosphodiesterase

endo H:

Mannosyl-glycoprotein endo-β-N-acetylglucosaminidase (EC 3.2.1.96)

PNGase F:

Peptide-N4-(N-acetyl-β-glucosaminyl)asparagine amidase (EC 3.5.1.52)

GPI:

Glycosylphosphatidylinositol

p-nPPC:

p-Nitrophenylphosphocholine

Con A:

Concanavalin A

DEAE:

Diethylaminoethyl

References

  1. Abra RM, Quinn PJ (1976) Some characteristics of sn-glycero-3-phosphocholine diesterases from rat brain. Biochim Biophys Acta 431:631–639

    Article  PubMed  CAS  Google Scholar 

  2. Kanfer JN, McCartney DG (1989) Glycerophosphorylcholine phosphocholine phosphodiesterase activity of rat brain myelin. J Neurosci Res 24:231–240

    Article  PubMed  CAS  Google Scholar 

  3. Kanfer JN, McCartney DG (1988) Developmental and regional quantitation of glycerophosphorylcholine phosphodiesterase activities in rat brain. Neurochem Res 13:803–806

    Article  PubMed  CAS  Google Scholar 

  4. Kanfer JN, McCartney DG (1989) Regional and developmental estimations of glycerophosphorylcholine phosphodiesterase activities in rat brain. Dev Neurosci 11:26–29

    Article  PubMed  CAS  Google Scholar 

  5. Yuan J, McCartney DG, Monge M, Espinosa LMA, Zalc B, Vellis J, Kanfer JN (1992) Glycerophosphocholine phosphocholine phosphodiesterase activity in cultured oligodendrocytes, astrocytes, and central nervous tissue of dysmyelinating rodent mutants. J Neurosci Res 31:68–74

    Article  PubMed  CAS  Google Scholar 

  6. Monge M, Yuan J, Cabon F, Zalc B, Kanfer JN (1993) Glycerophosphorylcholine phosphocholine phosphodiesterase activity during the differentiation of glial progenitor cells. J Neurosci Res 36:441–445

    Article  PubMed  CAS  Google Scholar 

  7. Janzen L, Tourtellotte WW, Kanfer JN (1990) Glycerophosphocholine phosphocholine phosphodiesterase is reduced in multiple sclerosis plaques. Exp Neurol 109:243–246

    Article  PubMed  CAS  Google Scholar 

  8. Sok DE, Kim MR (1992) A spectrophotometric assay of Zn(2+)-glycerophosphorylcholine phosphocholine phosphodiesterase using p-nitrophenylphoshorylcholine. Anal Biochem 203:201–205

    Article  PubMed  CAS  Google Scholar 

  9. Sok DE, Kim MR (1994) Brain myelin-bound Zn(2+)-glycerophosphocholine cholinephosphodiesterase is a glycosylphosphatidylinositol-anchored enzyme of two different molecular forms. Neurochem Res 19:97–103

    Article  PubMed  CAS  Google Scholar 

  10. Sok DE (1996) Properties of a Zn(2+)-glycerophosphocholine cholinephosphodiesterase from bovine brain membranes. Neurochem Res 21:1193–1199

    Article  PubMed  CAS  Google Scholar 

  11. Sakagami H, Aoki J, Natori Y, Nishikawa K, Kakehi Y, Natori Y, Arai H (2005) Biochemical and molecular characterisation of a novel choline-specific glycerophosphodiester phosphodiesterase belonging to the nucleotide pyrophosphatase/phosphodiesterase family. J Biol Chem 280:23084–23093

    Article  PubMed  CAS  Google Scholar 

  12. Hung ND, Kim MR, Sok DE (2010) Purification and characterization of lysophospholipase C from pig brain. Neurochem Res 35:50–59

    Article  PubMed  CAS  Google Scholar 

  13. Tollersrud OK, Berg T, Healy P, Evjen G, Ramachandran U, Nilssen O (1997) Purification of bovine lysosomal alpha-mannosidase, characterization of its gene and determination of two mutations that cause alpha-mannosidosis. Eur J Biochem 246:410–419

    Article  PubMed  CAS  Google Scholar 

  14. Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: signalp 3.0. J Mol Biol 340:783–795

    Article  PubMed  Google Scholar 

  15. Zalatan JG, Fenn TD, Brunger AT, Herschlag D (2006) Structural and functional comparison of nucleotide pyrophosphatase/phosphodiesterase and alkaline phosphatase: implication for mechanism and evolution. Biochemistry 45:9788–9803

    Article  PubMed  CAS  Google Scholar 

  16. Nishimasu H, Okudaira S, Hama K, Mihara E, Dohmae N, Inoue A, Ishitani R, Takagi J, Aoki J, Nureki O (2011) Crystal structure of autotaxin and insights into GPCR activation by lipid mediators. Nat Struct Mol Biol 18:205–212

    Article  PubMed  CAS  Google Scholar 

  17. Ishii A, Ikenaka K, Pfeiffer SE (2007) The N-glycan profile of mouse myelin, a specialized central nervous system membrane. J Neurochem 103:25–31

    Article  PubMed  CAS  Google Scholar 

  18. Jahn O, Tenzer S, Werner HB (2009) Myelin proteonomics: molecular anatomy of an insulating sheath. Mol Neurobiol 40:55–72

    Article  PubMed  CAS  Google Scholar 

  19. Vanrobaeys F, Van Coster R, Dhondt G, Devreese B, Beeumen J (2005) Profiling of myelin proteins by 2D-gel electrophoresis and multidimensional liquid chromatography coupled to MALDI TOF–TOF mass spectrometry. J Proteome Res 4:2283–2293

    Article  PubMed  CAS  Google Scholar 

  20. Dugas JC, Tai YC, Speed TP, Ngai J, Barres BA (2006) Functional genomic analysis of oligodendrocyte differentiation. J Neurosci 26:10967–10983

    Article  PubMed  CAS  Google Scholar 

  21. Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, Xing Y, Lubischer JL, Krieg PA, Krupenko SA, Thompson WJ, Barres BA (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 28:264–278

    Article  PubMed  CAS  Google Scholar 

  22. Rosta E, Kamerlin SC, Warshel A (2008) On the interpretation of the observed linear free energy relationship in phosphate hydrolysis: a thorough computational study of phosphate diester hydrolysis in solution. Biochemistry 47:3725–3735

    Article  PubMed  CAS  Google Scholar 

  23. Nixon GM, Mathieson FA, Hunter I (2008) The multifunctional role of sphingosylphosphorylcholine. Prog Lipid Res 47:62–75

    Article  PubMed  CAS  Google Scholar 

  24. Rodriguez-Lafrasse C, Vanier MT (1999) Sphingosylphosphorylcholine in Nieman-Pick disease brain: accumulation in type A but not in type B. Neurochem Res 24:199–205

    Article  PubMed  CAS  Google Scholar 

  25. Cheng Y, Nilsson A, Tomquist E, Duan RD (2002) Purification, characterization and expression of rat intestinal alkaline sphingomyelinase. J Lipid Res 43:316–324

    PubMed  CAS  Google Scholar 

  26. Kramer EM, Koch T, Niehaus A, Trotter J (1997) Oligodendrocytes direct glycosyl phosphatidylinositol-anchored proteins to the myelin sheath in glycosphingolipid-rich complexes. J Biol Chem 272:8937–8945

    Article  PubMed  CAS  Google Scholar 

  27. Dupree JL, Pomicter AD (2010) Myelin, DIGs and membrane rafts in the central nervous system. Prostaglandins Other Lipid Mediat 91:118–129

    Article  PubMed  CAS  Google Scholar 

  28. Jana A, Pahan K (2010) Sphingolipids in multiple sclerosis. Neuromolecular Med 12:351–361

    Article  PubMed  CAS  Google Scholar 

  29. Jansen S, Callewaert N, Dewerte I, Andries M, Ceulemans H, Bollen M (2007) An essential oligomannosidic glycan chain in the catalytic domain of autotaxin, a secreted lysophospholipase-D. J Biol Chem 282:11084–11091

    Article  PubMed  CAS  Google Scholar 

  30. Heikinheimo P, Helland R, Leiros HK, Leiros I, Karlsen S, Evjen G, Ravelli R, Schoen G, Ruigrok R, Tollersrud OK, McSweeney S, Hough E (2003) The structure of bovine lysosomal alpha-mannosidase suggests a novel mechanism for low pH activation. J Mol Biol 327:631–644

    Article  PubMed  CAS  Google Scholar 

  31. Kornfeld R, Kornfeld S (1985) Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem 54:631–664

    Article  PubMed  CAS  Google Scholar 

  32. Lazzarino DA, Gabel CA (1988) Biosynthesis of the mannose 6-phosphate recognition marker in transport-impaired mouse lymphoma cells. Demonstration of a two-step phosphorylation. J Biol Chem 263:10118–10126

    PubMed  CAS  Google Scholar 

  33. Brescani R, von Figura K (1996) Dephosphorylation of the mannose-6-phosphate recognition marker is localized in late compartments of the endocytic route. Eur J Biochem 238:669–674

    Article  Google Scholar 

  34. Towatari T, Miyamura T, Kondo A, Kato I, Inoue M, Kido H (1998) The structures of asparagine-linked oligosaccharides of rat liver cathepsin L reflect the substrate specificity of lysosomal alpha-mannosidase. Eur J Biochem 256:163–169

    Article  PubMed  CAS  Google Scholar 

  35. Naismith JH, Field RA (1996) Structural basis of trimannoside recognition by concanavalin A. J Biol Chem 271:972–976

    Article  PubMed  CAS  Google Scholar 

  36. Cacia J, Quan CP, Pai R, Frenz J (1998) Human DNase I contains mannose 6-phosphate and binds the cation-dependent mannose 6-phosphate receptor. Biochemistry 37:15154–15161

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Bente Mortensen for technical support, Toril Anne Gronseth, Department of Pharmacy, University of Tromso for help on Mass Spectrometry analyses and prof. Knut Sletten, University of Oslo on Edman degradation. The work was supported by Institute of Medical Biology, the Health Faculty, University of Tromsø.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ole K. Greiner-Tollersrud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greiner-Tollersrud, L., Berg, T., Stensland, H.M.F.R. et al. Bovine Brain Myelin Glycerophosphocholine Choline Phosphodiesterase is an Alkaline Lysosphingomyelinase of the eNPP-Family, Regulated by Lysosomal Sorting. Neurochem Res 38, 300–310 (2013). https://doi.org/10.1007/s11064-012-0921-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-012-0921-z

Keywords

Navigation