Skip to main content
Log in

Low-Dose Sarin Exposure Produces Long Term Changes in Brain Neurochemistry of Mice

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Sarin is a toxic organophosphorus (OP) nerve agent that has been reported to cause long-term alterations in behavioral and neuropsychological processes. The present study was designed to investigate the effect of low dose sarin exposure on the monoamine neurotransmitter systems in various brain regions of mice. The rationale was to expand our knowledge about the noncholinergic neurochemical alterations associated with low dose exposure to this cholinesterase inhibitor. We analyzed the levels of monoamines and their metabolites in different brain areas after exposure of male C57BL/6 mice to a subclinical dose of sarin (0.4 LD50). Mice did not show any signs of cholinergic toxicity or pathological changes in brain tissue. At 1, 4 and 8 weeks post-sarin exposure brains were collected for neurochemical analysis. A significant decrease in the dopamine (DA) turnover, as measured by the metabolite to parent ratio, was observed in the frontal cerebral cortex (FC) at all time points tested. DA turnover was significantly increased in the amygdala at 4 weeks but not at 1 or 8 weeks after exposure. The caudate nucleus displayed a decrease in DA turnover at 1 week but no significant change was observed at 4 and 8 weeks suggesting a reversible effect. In addition to this, serotonin (5-HT) levels were transiently altered at various time points in all the brain regions studied (increase in FC, caudate nucleus and decrease in amygdala). Since there were no signs of cholinergic toxicity or cell death after sarin exposure, different non-cholinergic mechanisms may be involved in regulating these effects. Our results demonstrate that non-symptomatic dose of OP nerve agent sarin has potent long-term, region-specific effects on the monoaminergic neurotransmitter systems. Data also suggests differential effects of sarin on the various DA projections. These neurochemical alterations could be associated with long term behavioral and neuropsychological changes associated with low dose OP exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Marrs TC, Maynard RL, Sidell FR (1996) Chemical warfare agents. Toxicology and treatment. Wiley, New York

    Google Scholar 

  2. Taylor P (2001) Anticholinesterase agents. In: Limbird LE, Hardman JG, Gilman AG (eds) Goodman and Gilman’s the pharmacological basis of therapeutics. McGraw Hill, New-York, pp 175–191

    Google Scholar 

  3. McDonough JH, Shih TM (1997) Neuropharmacological mechanisms of nerve agent-induced seizure and neuropathology. Neurosci Biobehav Rev 21(5):559–579

    Article  PubMed  CAS  Google Scholar 

  4. Shih TM, Duniho SM, McDonough JH (2003) Control of nerve agent-induced seizures is critical for neuroprotection and survival. Toxicol Appl Pharmacol 188(2):69–80

    Article  PubMed  CAS  Google Scholar 

  5. Pope C, Karanth S, Liu J (2005) Pharmacology and toxicology of cholinesterase inhibitors: uses and misuses of a common mechanism of action. Elsevier, Amsterdam

    Google Scholar 

  6. Haley RW (1999) Is there a Gulf War syndrome? Lancet 354(9190):1645–1646

    Article  PubMed  CAS  Google Scholar 

  7. Nakajima T et al (1999) Sequelae of sarin toxicity at one and three years after exposure in Matsumoto, Japan. J Epidemiol 9(5):337–343

    Article  PubMed  CAS  Google Scholar 

  8. Barr DB et al (2004) Concentrations of dialkyl phosphate metabolites of organophosphorus pesticides in the U.S. population. Environ Health Perspect 112(2):186–200

    Article  PubMed  CAS  Google Scholar 

  9. Chao LL et al (2010) Effects of low-level exposure to sarin and cyclosarin during the 1991 Gulf War on brain function and brain structure in US veterans. Neurotoxicology 31(5):493–501

    Article  PubMed  CAS  Google Scholar 

  10. IOM (1995) Health consequences of service during the Persian Gulf War: initial findings and recommendations for immediate action. National Academy Press, Washington, DC

    Google Scholar 

  11. Couzin J (2004) Epidemiology. VA advisers link Gulf War illnesses to neurotoxins. Science 306(5693):26–27

    Article  PubMed  CAS  Google Scholar 

  12. Lashof JC, Arthur Caplan JB, Cross TP, Custis D, Hamburg DA, Johnson JA, Knox M, Landrigan PJ, Larson EL, Rios R, Taylor AK (1996) Presidential advisory committee on Gulf War Veterans’ illnesses, in final report. Washington, DC

  13. Stephens R et al (1995) Neuropsychological effects of long-term exposure to organophosphates in sheep dip. Lancet 345(8958):1135–1139

    Article  PubMed  CAS  Google Scholar 

  14. Rosenstock L et al (1991) Chronic central-nervous system effects of acuteorganophosphate pesticide intoxication. Lancet 338(8761):223–227

    Article  PubMed  CAS  Google Scholar 

  15. Bazylewicz-Walczak B, Majczakowa W, Szymczak M (1999) Behavioral effects of occupational exposure to organophosphorous pesticides in female greenhouse planting workers. Neurotoxicology 20(5):819–826

    PubMed  CAS  Google Scholar 

  16. Farahat TM et al (2003) Neurobehavioural effects among workers occupationally exposed to organophosphorous pesticides. Occup Environ Med 60(4):279–286

    Article  PubMed  CAS  Google Scholar 

  17. Bouchard MF et al (2010) Attention-deficit/hyperactivity disorder and urinary metabolites of organophosphate pesticides. Pediatrics. 125(6):e1270–e1277

    Google Scholar 

  18. Bouchard MF et al (2011) Prenatal exposure to organophosphate pesticides and IQ in 7-year-old children. Environ Health Perspect 119(8):1189–1195

    Google Scholar 

  19. Engel SM et al (2011) Prenatal exposure to organophosphates, paraoxonase 1, and cognitive development in childhood. Environ Health Perspect 119(8):1182–1188

    Google Scholar 

  20. Scremin OU et al (2003) Delayed neurologic and behavioral effects of subtoxic doses of cholinesterase inhibitors. J Pharmacol Exp Ther 304(3):1111–1119

    Article  PubMed  CAS  Google Scholar 

  21. Russell RW et al (1986) Behavioral, neurochemical and physiological effects of repeated exposures to subsymptomatic levels of the anticholinesterase, soman. Neurobehav Toxicol Teratol 8(6):675–685

    PubMed  CAS  Google Scholar 

  22. Mach M et al (2008) Delayed behavioral and endocrine effects of sarin and stress exposure in mice. J Appl Toxicol 28(2):132–139

    Article  PubMed  CAS  Google Scholar 

  23. Mamczarz J et al (2010) An acute exposure to a sub-lethal dose of soman triggers anxiety-related behavior in guinea pigs: interactions with acute restraint. Neurotoxicology 31(1):77–84

    Google Scholar 

  24. Morris M, Key MP, Farah V (2007) Sarin produces delayed cardiac and central autonomic changes. Exp Neurol 203(1):110–115

    Article  PubMed  CAS  Google Scholar 

  25. Kassa J, Koupilova M, Vachek J (2001) The influence of low-level sarin inhalation exposure on spatial memory in rats. Pharmacol Biochem Behav 70(1):175–179

    Article  PubMed  CAS  Google Scholar 

  26. Shih TM, Hulet SW, McDonough JH (2006) The effects of repeated low-dose sarin exposure. Toxicol Appl Pharmacol 215(2):119–134

    Article  PubMed  CAS  Google Scholar 

  27. Burchfiel JL, Duffy FH (1982) Organophosphate neurotoxicity: chronic effects of sarin on the electroencephalogram of monkey and man. Neurobehav Toxicol Teratol 4(6):767–778

    PubMed  CAS  Google Scholar 

  28. Aldridge JE et al (2005) Alterations in central nervous system serotonergic and dopaminergic synaptic activity in adulthood after prenatal or neonatal chlorpyrifos exposure. Environ Health Perspect 113(8):1027–1031

    Article  PubMed  CAS  Google Scholar 

  29. Kant GJ, Kenion CC, Meyerhoff JL (1984) Effects of diisopropylfluorophosphate (DFP) and other cholinergic agents on release of endogenous dopamine from rat brain striatum in vitro. Biochem Pharmacol 33(11):1823–1825

    Article  PubMed  CAS  Google Scholar 

  30. Coudraylucas C et al (1987) Changes in brain monoamine content and metabolism induced by paraoxon and soman intoxication—effect of atropine. Xenobiotica 17(9):1131–1138

    Article  CAS  Google Scholar 

  31. Christin D et al (2008) Effects of repeated low-dose soman exposure on monoamine levels in different brain structures in mice. Neurochem Res 33(5):919–926

    Article  PubMed  CAS  Google Scholar 

  32. Eells JB, Brown T (2009) Repeated developmental exposure to chlorpyrifos and methyl parathion causes persistent alterations in nicotinic acetylcholine subunit mRNA expression with chlorpyrifos altering dopamine metabolite levels. Neurotoxicol Teratol 31(2):98–103

    Article  PubMed  CAS  Google Scholar 

  33. Moreno M et al (2008) Long-term monoamine changes in the striatum and nucleus accumbens after acute chlorpyrifos exposure. Toxicol Lett 176(2):162–167

    Article  PubMed  CAS  Google Scholar 

  34. Casida JE, Quistad GB (2004) Organophosphate toxicology: safety aspects of nonacetylcholinesterase secondary targets. Chem Res Toxicol 17(8):983–998

    Article  PubMed  CAS  Google Scholar 

  35. Rocha ES et al (1999) Low concentrations of the organophosphate VX affect spontaneous and evoked transmitter release from hippocampal neurons: toxicological relevance of cholinesterase-independent actions. Toxicol Appl Pharmacol 159(1):31–40

    Article  PubMed  CAS  Google Scholar 

  36. Duysen EG et al (2001) Evidence for nonacetylcholinesterase targets of organophosphorus nerve agent: supersensitivity of acetylcholinesterase knockout mouse to VX lethality. J Pharmacol Exp Ther 299(2):528–535

    PubMed  CAS  Google Scholar 

  37. Cooper JR, Bloom FE, Roth RH (1982) Catecholamines II—CNS aspects. In: The biochemical basis of neuropharmacology. Oxford University Press, New York, pp 173–222

  38. Feldman RS, Meyer JS, Quenzer LF (1997) Catecholamines. In: Farley P (ed) Neuropsychopharmacology. Sinauer Associates Inc., Sunderland, pp 277–344

  39. Haley RW (1997) Is there a Gulf War syndrome? Searching for syndromes by factor analysis of symptoms (vol 277, pg 215, 1997). JAMA 278(5):388

    Article  Google Scholar 

  40. Maxwell DM, Brecht KM, O’Neill BL (1987) The effect of carboxylesterase inhibition on interspecies differences in soman toxicity. Toxicol Lett 39(1):35–42

    Article  PubMed  CAS  Google Scholar 

  41. Garrett TL et al (2010) A murine model for sarin exposure using the carboxylesterase inhibitor CBDP. Neurotoxicology 31(5):502–508

    Google Scholar 

  42. Ellman GL et al (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  PubMed  CAS  Google Scholar 

  43. Schmued LC et al (2005) Fluoro-Jade C results in ultra high resolution and contrast labeling of degenerating neurons. Brain Res 1035(1):24–31

    Article  PubMed  CAS  Google Scholar 

  44. Schmued LC, Albertson C, Slikker W (1997) Fluoro-Jade: a novel fluorochrome for the sensitive and reliable histochemical localization of neuronal degeneration. Brain Res 751(1):37–46

    Article  PubMed  CAS  Google Scholar 

  45. Keith BJ, Franklin GP (2008) The mouse brain in stereotaxic coordinates, 3rd edn. Academic Press, New York

  46. Harvey AT et al (1994) Monoamine activity in anterior hypothalamus of guinea pig pups separated from their mothers. Behav Neurosci 108(1):171–176

    Article  PubMed  CAS  Google Scholar 

  47. Lucot JB et al (2005) Measurement of plasma catecholamines in small samples from mice. J Pharmacol Toxicol Methods 52(2):274–277

    Article  PubMed  CAS  Google Scholar 

  48. Bloch-Shilderman E et al (2008) Subchronic exposure to low-doses of the nerve agent VX: physiological, behavioral, histopathological and neurochemical studies. Toxicol Appl Pharmacol 231(1):17–23

    Article  PubMed  CAS  Google Scholar 

  49. Choudhary S et al (2002) Possible involvement of dopaminergic neurotransmitter system in dichlorvos induced delayed neurotoxicity. J Biochem Mol Biol Biophys 6(1):29–36

    Article  PubMed  CAS  Google Scholar 

  50. Fuxe K et al (1974) Origin of dopamine nerve-terminals in limbic and frontal cortex—evidence for meso-cortico dopamine neurons. Brain Res 82(2):349–355

    Article  CAS  Google Scholar 

  51. Oades RD, Halliday GM (1987) Ventral tegmental (A10) system—neurobiology. 1. Anatomy and connectivity. Brain Res Rev 12(2):117–165

    Article  Google Scholar 

  52. White FJ (1996) Synaptic regulation of mesocorticolimbic dopamine neurons. Annu Rev Neurosci 19:405–436

    Article  PubMed  CAS  Google Scholar 

  53. Fallon JH, Koziell DA, Moore RY (1978) Catecholamine innervation of basal forebrain II. Amygdala, suprarhinal cortex and entorhinal cortex. J Compar Neurol 180(3):509–531

    Article  CAS  Google Scholar 

  54. Inglis FM, Moghaddam B (1999) Dopaminergic innervation of the amygdala is highly responsive to stress. J Neurochem 72(3):1088–1094

    Article  PubMed  CAS  Google Scholar 

  55. Hasue RH, Shammah-Lagnado SJ (2002) Origin of the dopaminergic innervation of the central extended amygdala and accumbens shell: a combined retrograde tracing and immunohistochemical study in the rat. J Compar Neurol 454(1):15–33

    Article  CAS  Google Scholar 

  56. Padilla S et al (2005) Neurochemical effects of chronic dietary and repeated high-level acute exposure to chlorpyrifos in rats. Toxicol Sci 88(1):161–171

    Article  PubMed  CAS  Google Scholar 

  57. Pope CN et al (1992) Long-term neurochemical and behavioral effects induced by acute chlorpyrifos treatment. Pharmacol Biochem Behav 42(2):251–256

    Article  PubMed  CAS  Google Scholar 

  58. Rausch JL et al (1985) Physostigmine effects on serotonin uptake in human-blood platelets. Eur J Pharmacol 109(1):91–96

    Article  PubMed  CAS  Google Scholar 

  59. Oquendo MA, Mann JJ (2000) The biology of impulsivity and suicidality. Psychiatr Clin North Am 23(1):11–25

    Article  PubMed  CAS  Google Scholar 

  60. Roldan-Tapia L et al (2006) Neuropsychological sequelae from acute poisoning and long-term exposure to carbamate and organophosphate pesticides. Neurotoxicol Teratol 28(6):694–703

    Article  PubMed  CAS  Google Scholar 

  61. London L et al (2005) Suicide and exposure to organophosphate insecticides: cause or effect? Am J Ind Med 47(4):308–321

    Article  PubMed  CAS  Google Scholar 

  62. Slotkin TA, Seidler FJ (2007) Comparative developmental neurotoxicity of organophosphates in vivo: transcriptional responses of pathways for brain cell development, cell signaling, cytotoxicity and neurotransmitter systems. Brain Res Bull 72(4–6):232–274

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Gulf War Veterans Illnesses Program (GW060050). We thank all the members of the author’s laboratory particularly Kate Irwin, Kaushal Joshi, Ajay Sharma, Abigail Schwartz and Christine Rapp for their contribution to the project.

Conflict of interest

The authors declare no conflict of interest associated with this publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James B. Lucot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oswal, D.P., Garrett, T.L., Morris, M. et al. Low-Dose Sarin Exposure Produces Long Term Changes in Brain Neurochemistry of Mice. Neurochem Res 38, 108–116 (2013). https://doi.org/10.1007/s11064-012-0896-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-012-0896-9

Keywords

Navigation