Skip to main content
Log in

Antiparkinsonian Effects of Aqueous Methanolic Extract of Hyoscyamus niger Seeds Result From its Monoamine Oxidase Inhibitory and Hydroxyl Radical Scavenging Potency

  • ORIGINAL PAPER
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Hyoscyamus species is one of the four plants used in Ayurveda for the treatment of Parkinson’s disease (PD). Since Hyoscyamusniger was found to contain negligible levels of L-DOPA, we evaluated neuroprotective potential, if any, of characterized petroleum ether and aqueous methanol extracts of its seeds in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD in mice. Air dried authenticated H. niger seeds were sequentially extracted using petroleum ether and aqueous methanol and were characterized employing HPLC-electrochemistry and LCMS. Parkinsonian mice were treated daily twice with the extracts (125–500 mg/kg, p.o.) for two days and motor functions and striatal dopamine levels were assayed. Administration of the aqueous methanol extract (containing 0.03% w/w of L-DOPA), but not petroleum ether extract, significantly attenuated motor disabilities (akinesia, catalepsy and reduced swim score) and striatal dopamine loss in MPTP treated mice. Since the extract caused significant inhibition of monoamine oxidase activity and attenuated 1-methyl-4-phenyl pyridinium (MPP+)-induced hydroxyl radical (·OH) generation in isolated mitochondria, it is possible that the methanolic extract of Hyoscyamusniger seeds protects against parkinsonism in mice by means of its ability to inhibit increased ·OH generated in the mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sawant M, Isaac JC, Narayanan S (2004) Analgesic studies on total alkaloids and alcohol extracts of Eclipta alba (Linn.) Hassk. Phytotheyapt Res 18:111–113

    Article  CAS  Google Scholar 

  2. El Jaber-Vazdekis N, González C, Ravelo AG et al (2009) Cloning, characterization and analysis of expression profiles of a cDNA encoding a hyoscyamine 6-beta-hydroxylase (H6H) from Atropa baetica Willk. Plant Physiol Biochem 47:20–25

    Article  CAS  PubMed  Google Scholar 

  3. Gilani AH, Khan AU, Raoof M et al (2008) Gastrointestinal, selective airways and urinary bladder relaxant effects of Hyoscyamus reticulatus are mediated through dual blockade of muscarinic receptors and Ca2+ channels. Fundam Clin Pharmacol 22:87–99

    Article  CAS  PubMed  Google Scholar 

  4. Ramoutsaki IA, Papadakis CE, Ramoutsakis IA et al (2002) Therapeutic methods used for otolaryngological problems during the Byzantine period. Ann Otol Rhinol Laryngol 111:553–557

    PubMed  Google Scholar 

  5. Ma CY, Liu WK, Che CT (2002) Lignanamides and nonalkaloidal components of Hyoscyamus niger seeds. J Nat Prod 65:206–209

    Article  CAS  PubMed  Google Scholar 

  6. Gouriedevi M, Ramu MG, Venkararam BS (1991) Treatment of Parkinson’s disease in ‘Ayurveda’ (ancient Indian system of Medicine): discussion paper. J R Soc Med 84:491–492

    CAS  Google Scholar 

  7. Nagashayana N, Sankarankutty P, Nampoothiri MR et al (2000) Association of L-DOPA with recovery following Ayurveda medication in Parkinson’s disease. J Neurol Sci 176:124–127

    Article  CAS  PubMed  Google Scholar 

  8. Reza HM, Mohammad H, Golnaz E et al (2009) Effect of methanolic extract of Hyoscyamus reticulatus L. on the seizure induced by picritoxin in mice. Pak J Pharmacol Sci 22:308–312

    Google Scholar 

  9. Khan AU, Gilani AH (2008) Cardiovascular inhibitory effects of Hyoscyamus reticulatus. Methods Find Exp Clin Pharmacol 30:295–300

    Article  CAS  PubMed  Google Scholar 

  10. Katzenschlager R, Evans A, Manson A et al (2004) Mucuna pruriens in Parkinson’s disease: a double blind clinical and pharmacological study. J Neurol Neurosurg Psychiatry 75:1672–1677

    Article  CAS  PubMed  Google Scholar 

  11. Manyam BV, Dhanasekaran M, Hare TA (2004) Effect of antiparkinson drug HP-200 (Mucuna pruriens) on the central monoaminergic neurotransmitters. Phytotherapy Res 18:97–101

    Article  Google Scholar 

  12. Sankar SR, Manivasagam T, Sankar V et al (2009) Withania somnifera root extract improves catecholamines and physiological abnormalities seen in a Parkinson’s disease model mouse. J Ethnopharmacol 125:369–373

    Article  PubMed  Google Scholar 

  13. Sankar SR, Manivasagam T, Krishnamurti A et al (2007) The neuroprotective effect of Withania somnifera root extract in MPTP-intoxicated mice: an analysis of behavioral and biochemical variables. Cell Mol Biol Lett 12:473–481

    Article  CAS  PubMed  Google Scholar 

  14. Ahmad M, Saleem S, Ahmad AS et al (2005) Neuroprotective effects of Withania somnifera on 6-hydroxydopamine induced Parkinsonism in rats. Hum Exp Toxicol 24:137–147

    Article  PubMed  Google Scholar 

  15. Mitra N, Mohanakumar KP, Ganguly DK (1994) Resistance of golden hamster to 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine: relationship with low levels of regional monoamine oxidase-B. J Neurochem 62:1906–1912

    Article  CAS  PubMed  Google Scholar 

  16. Sedelis M, Hofele K, Auburger GW, Morgan S, Huston JP, Schwarting RK (2000) Evidence for resistance to MPTP in C57BL/6 × BALB/c F1 hybrids as compared with their progenitor strains. Neuroreport 11:1093–1096

    Article  CAS  PubMed  Google Scholar 

  17. Filipov NM, Norwood AB, Sistrunk SC (2009) Strain-specific sensitivity to MPTP of C57BL/6 and BALB/c mice is age dependent. Neuroreport 20:713–717

    Article  CAS  PubMed  Google Scholar 

  18. Hoskins JA, Davis LJ (1989) The acute effect on levels of catecholamines and metabolites in brain, of a single dose of MPTP in 8 strains of mice. Neuropharmacology 28:1389–1397

    Article  CAS  PubMed  Google Scholar 

  19. Chia LG, Liu SP, Lee EH (1992) Differential effects of deprenyl and MPTP on catecholamines and activity in BALB/c mice. Neuroreport 3:777–780

    Article  CAS  PubMed  Google Scholar 

  20. Samantaray S, Mohanakumar KP (2003) Calcium channel agonist, (±)-Bay K8644, causes an immediate increase in the striatal 1-methyl-4-phenylpyridinium level following systemic administration of the dopaminergic neurotoxin, 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine in Balb/c mice. Neurosci Lett 346:69–72

    Article  CAS  PubMed  Google Scholar 

  21. Haobam R, Sindhu KM, Chandra G, Mohanakumar KP (2005) Swim-test as a function of motor impairment in MPTP model of Parkinson’s disease: a comparative study in two mouse strains. Behav Brain Res 163:159–167

    Article  CAS  PubMed  Google Scholar 

  22. Mitra N, Mohanakumar KP, Ganguly DK (1992) Dissociation of serotoninergic and dopaminergic components in acute effects of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine in mice. Brain Res Bull 28:355–364

    Article  CAS  PubMed  Google Scholar 

  23. Muralikrishnan D, Mohanakumar KP (1998) Neuroprotection by bromocriptine against 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced neurotoxicity in mice. FASEB J 12:905–912

    CAS  PubMed  Google Scholar 

  24. Mohanakumar KP, Muralikrishnan D, Thomas B (2000) Neuroprotection by sodium salicylate against 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced neurotoxicity. Brain Res 864:281–290

    Article  CAS  PubMed  Google Scholar 

  25. Morinan A, Garratt HM (1985) An improved fluorimetric assay for brain monoamine oxidase. J Pharmacol Methods 13:213–223

    Article  CAS  PubMed  Google Scholar 

  26. Lowry OH, Rosebrough NJ, Farr AL et al (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  27. Mohanakumar KP, de Bartolomeis A, Wu RM et al (1994) Ferrous-citrate complex and nigral degeneration: evidence for free-radical formation and lipid peroxidation. Ann N Y Acad Sci 738:392–399

    Article  CAS  PubMed  Google Scholar 

  28. Banerjee R, Saravanan KS, Thomas B et al (2008) Evidence for hydroxyl radical scavenging action of nitric oxide donors in the protection against 1-methyl-4-phenylpyridinium-induced neurotoxicity in rats. Neurochem Res 33:985–995

    Article  CAS  PubMed  Google Scholar 

  29. Thomas B, Saravanan KS, Mohanakumar KP (2008) In vitro and in vivo evidences that antioxidant action contributes to the neuroprotective effects of the neuronal nitric oxide synthase and monoamine oxidase-B inhibitor, 7-nitroindazole. Neurochem Int 52:990–1001

    Article  CAS  PubMed  Google Scholar 

  30. Navneet AK, Appukuttan TA, Pandey M (2008) Taurine fails to protect against 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced striatal dopamine depletion in mice. Amino Acids 35:457–461

    Article  CAS  PubMed  Google Scholar 

  31. Halliwell B, Kaur H, Ingelman-Sundberg M (1991) Hydroxylation of salicylate as an assay for hydroxyl radiocals: a cautionary note. Free Radic Biol Med 10:439–441

    Article  CAS  PubMed  Google Scholar 

  32. Ma CY, William ID, Che CT (1999) Withanolides from Hyoscyamus niger seeds. J Nat Prod 62:1445–1447

    Article  CAS  PubMed  Google Scholar 

  33. Sajeli B, Sahai M, Suessmuth R et al (2006) Hyosgerin, a new optically active coumarinolignan, from the seeds of Hyoscyamus niger. Chem Pharm Bull 54:538–541

    Article  CAS  PubMed  Google Scholar 

  34. Begum AS, Verma S, Sahai M et al (2009) Hyoscyamal, a new tetrahydrofurano lignan from Hyoscyamus niger Linn. Nat Prod Res 23:595–600

    Article  CAS  PubMed  Google Scholar 

  35. Brown JH, Taylor P (2001) Muscarinic receptors agonist and antagonists. In: Hardman JG, Limbird LE, Gilman’s AG (eds) Goodman and Gilman’s the pharmacological basis of therapeutics, 10th edn. McGraw-Hill, New York, p 10

    Google Scholar 

  36. Asahina M, Shinotoh H, Hirayama K et al (1995) Hypersensitivity of cortical muscarinic receptors in Parkinson’s disease demonstrated by PET. Acta Neurol Scand 91:437–443

    Article  CAS  PubMed  Google Scholar 

  37. Quik M (2004) Smoking, nicotine and Parkinson’s disease. Trends Neurosci 27:561–568

    Article  CAS  PubMed  Google Scholar 

  38. Rodriguez-Puertas R, Pazos A, Pascual J (1994) Cholinergic markers in degenerative parkinsonism: autoradiographic demonstration of high-affinity choline uptake carrier hyperactivity. Brain Res 636:327–332

    Article  CAS  PubMed  Google Scholar 

  39. Schapira AH, Bezard E, Brotchie J et al (2006) Novel pharmacological targets for the treatment of Parkinson’s disease. Nat Rev Drug Discov 5:845–854

    Article  CAS  PubMed  Google Scholar 

  40. Abdel-Salam OM (2008) Drugs used to treat Parkinson’s disease, present status and future directions. CNS Neurol Disord Drug Targets 7:321–342

    Article  CAS  PubMed  Google Scholar 

  41. Rodnitzky RL (1999) Can calcium antagonists provide a neuroprotective effect in Parkinson’s disease? Drugs 57:845–849

    Article  CAS  PubMed  Google Scholar 

  42. Mandel S, Grünblatt E, Riederer P et al (2003) Neuroprotective strategies in Parkinson’s disease: an update on progress. CNS Drugs 17:729–762

    Article  CAS  PubMed  Google Scholar 

  43. Wu RM, Mohanakumar KP, Murphy DL et al (1994) Antioxidant mechanism and protection of nigral neurons against MPP+ toxicity by deprenyl (selegiline). Ann N Y Acad Sci 738:214–221

    Article  CAS  PubMed  Google Scholar 

  44. Thomas B, Muralikrishnan D, Mohanakumar KP (2000) In vivo hydroxyl radical generation in the striatum following systemic administration of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine in mice. Brain Res 852:221–224

    Article  CAS  PubMed  Google Scholar 

  45. Sairam K, Saravanan KS, Banerjee R et al (2003) Non-steroidal anti-inflammatory drug sodium salicylate, but not diclofenac or celecoxib, protects against 1-methyl-4-phenyl pyridinium-induced dopaminergic neurotoxicity in rats. Brain Res 966:245–252

    Article  CAS  PubMed  Google Scholar 

  46. Mohanakumar KP, Thomas B, Sharma SM et al (2002) Nitric oxide: an antioxidant and neuroprotector. Ann N Y Acad Sci 962:389–401

    Article  CAS  PubMed  Google Scholar 

  47. Muralikrishnan D, Samantaray S, Mohanakumar KP (2003) D-deprenyl protects nigrostriatal neurons against 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced dopaminergic neurotoxicity. Synapse 50:7–13

    Article  CAS  PubMed  Google Scholar 

  48. Thomas B, Mohanakumar KP (2004) Melatonin protects against oxidative stress caused by 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine in the mouse nigrostriatum. J Pineal Res 36:25–32

    Article  CAS  PubMed  Google Scholar 

  49. Maharaj DS, Saravanan KS, Maharaj H et al (2004) Acetaminophen and aspirin inhibit superoxide anion generation and lipid peroxidation, and protect against 1-methyl-4-phenyl pyridinium-induced dopaminergic neurotoxicity in rats. Neurochem Int 44:355–360

    Article  CAS  PubMed  Google Scholar 

  50. Knaryan VH, Samantaray S, Galoyan AA (2005) A synthetic human proline-rich-polypeptide enhances hydroxyl radical generation and fails to protect dopaminergic neurons against 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced toxicity in mice. Neurosci Lett 375:187–191

    Article  CAS  PubMed  Google Scholar 

  51. Ghosal S, Rama B, Chauhan PS, Mehta R (1975) Alkaloids of Sida cordifolia. Phytochemistry 14:830–832

    Article  CAS  Google Scholar 

  52. Sengupta T, Mohanakumar KP (2010) 2-Phenylethylamine, a constituent of chocolate and wine, causes mitochondrial complex-I inhibition, generation of hydroxyl radicals and depletion of striatal biogenic amines leading to psycho-motor dysfunctions in Balb/c mice. Neurochem Int 57:637–646

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

T Sengupta is a recipient of junior and senior research fellowships from the Council of Scientific & Industrial Research (CSIR), Govt of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. P. Mohanakumar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 300 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sengupta, T., Vinayagam, J., Nagashayana, N. et al. Antiparkinsonian Effects of Aqueous Methanolic Extract of Hyoscyamus niger Seeds Result From its Monoamine Oxidase Inhibitory and Hydroxyl Radical Scavenging Potency. Neurochem Res 36, 177–186 (2011). https://doi.org/10.1007/s11064-010-0289-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-010-0289-x

Keywords

Navigation