Skip to main content
Log in

Therapeutic Vitamin A Doses Increase the Levels of Markers of Oxidative Insult in Substantia Nigra and Decrease Locomotory and Exploratory Activity in Rats after Acute and Chronic Supplementation

  • Original paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Vitamin A is known to regulate some central nervous system (CNS)-associated functions. Vitamin A at high doses has been demonstrated to be beneficial in the treatment of some diseases, for instance acute promyelocytic leukemia. However, vitamin A and its naturally occurring metabolites (retinoids) are known to alter neuronal function, inducing behavioral disorders. Here we provide an evidence to indicate that vitamin A supplementation, at both therapeutic and excessive doses, induces oxidative stress in the rat substantia nigra. Vitamin A supplementation induced lipid peroxidation, protein carbonylation, and oxidation of protein thiol groups, as well as change in catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) activity. Surprisingly, locomotory and exploratory activity of rats were decreased after acute and chronic vitamin A supplementation. Therefore, we may conclude from our results that vitamin A supplementation is prooxidant to the rat substantia nigra and effective in altering behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wolf G (1984) Multiple functions of vitamin A. Physiol Rev 64:873–937

    PubMed  CAS  Google Scholar 

  2. Semba RD (1998) The role of vitamin A and related retinoids in immune function. Nutr Rev 56:S38–S48

    Article  PubMed  CAS  Google Scholar 

  3. McCaferry P, Zhang J, Crandall JE (2005) Retinoic acid signaling and function in the adult hippocampus. J Neurobiol 66:780–791

    Article  CAS  Google Scholar 

  4. Krezel W, Ghyselinck N, Samad TA, Dupe V, Kastner P, Borrelli E, Chambon P (1998) Impaired locomotion and dopamine signaling in retinoids receptor mutant mice. Science 279:863–867

    Article  PubMed  CAS  Google Scholar 

  5. Samad TA, Krezel W, Chambon P, Borrelli E (1997) Regulation of dopaminergic pathways by retinoids: activation of the D2 receptor promoter by members of the retinoic acid receptor-retinoid X receptor family. Proc Natl Acad Sci USA 94:14349–14354

    Article  PubMed  CAS  Google Scholar 

  6. Wang HF, Liu FC (2005) Regulation of multiple dopamine signal transduction molecules by retinoids in the developing striatum. Neuroscience 134:97–105

    Article  PubMed  CAS  Google Scholar 

  7. Bendich A, Langseth L (1989) Safety of vitamin A. Am J Clin Nutr 49:358–371

    PubMed  CAS  Google Scholar 

  8. Myhre AM, Carlsen MH, Bohn SK, Wold HL, Laake P, Blomhoff R (2003) Water-miscible, emulsified, and solid forms of retinol supplements are more toxic than oil-based preparations. Am J Clin Nutr 78:1152–1159

    PubMed  CAS  Google Scholar 

  9. Geelen JA (1979) Hypervitaminosis A induced teratogenesis. CRC Crit Rev Toxicol 6:351–375

    Article  PubMed  CAS  Google Scholar 

  10. O’Reilly KC, Shumake J, Gonzalez-Lima F, Lane MA, Bailey SJ (2006) Chronic administration of 13-cis-retinoic acid increases depression-related behavior in mice. Neuropsychopharmacol 31:1919–1927

    Article  CAS  Google Scholar 

  11. Hazen PG, Carney JF, Walker AE, Stewart JJ (1983) Depression- a side effect of 13-cis-retinoic acid therapy. J Am Acad Dermatol 9:278–279

    PubMed  CAS  Google Scholar 

  12. Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97:1634–1658

    Article  PubMed  CAS  Google Scholar 

  13. Abou-Sleiman P, Muqit MMK, Wood NW (2006) Expanding insights of mitochondrial dysfunction in Parkinson’s disease. Nat Rev Neurosci 7:207–219

    Article  PubMed  CAS  Google Scholar 

  14. Zaidi SMKR, Banu N (2004) Antioxidant potential of vitamins A, E, and C in modulating oxidative stress in rat brain. Clin Chim Acta 340:229–233

    Article  PubMed  CAS  Google Scholar 

  15. Moreira JCF, Dal-Pizzol F, Von Endt D, Bernard EA (1997) Effect of retinol on chromatin structure in Sertoli cells: 1,10-phenanthroline inhibit the increased DNAse I sensitivity induced by retinol. Med Sci Res 25:635–638

    Google Scholar 

  16. Dal-Pizzol F, Klamt F, Frota MLC Jr, Moraes LF, Moreira JCF, Benfato MS (2000) Retinol supplementation induces DNA damage and modulates iron turnover in rat Sertoli cells. Free Rad Res 33:677–687

    Article  CAS  Google Scholar 

  17. Klamt F, Dal-Pizzol F, Ribeiro NC, Bernard EA, Benfato MS, Moreira JCF (2000) Retinol-induced elevation in ornithine decarboxylase activity in cultured Sertoli cells is attenuated by free radical scavenger and by iron chelator. Mol Cell Biochem 208:71–76

    Article  PubMed  CAS  Google Scholar 

  18. Dal-Pizzol F, Klamt F, Benfato MS, Bernard EA, Moreira JCF (2001) Retinol supplementation induces oxidative stress and modulate antioxidant enzyme activity in rat Sertoli cells. Free Rad Res 34:395–404

    Article  CAS  Google Scholar 

  19. Frota MLC Jr, Klamt F, Dal-Pizzol F, Schiengold M, Moreira JCF (2004) Retinol-induced mdr1 and mdr3 modulation in cultured rat Sertoli cells is attenuated by free radical scavengers. Redox Rep 9:161–165

    Article  PubMed  CAS  Google Scholar 

  20. Klamt F, De Oliveira MR, Moreira JCF (2005) Retinol induces permeability transition and cytochrome c release from rat liver mitochondria. Biochim Biophys Acta 1726:14–20

    PubMed  CAS  Google Scholar 

  21. Gelain DP, Cammarota M, Zanotto-Filho A, De Oliveira RB, Dal-Pizzol F, Izquierdo I, Bevilaqua L, Moreira JCF (2006) Retinol induces the ERK1/2-dependent phosphorylation of CREB through a pathway involving the generation of reactive oxygen species in cultured Sertoli cells. Cell Signal 18:1685–1694

    Article  PubMed  CAS  Google Scholar 

  22. Cohen G, Farooqui R, Kesler N (1997) Parkinson disease: a new link between monoamine oxidase and mitochondrial electron flow. Proc Natl Acad Sci USA 94:4890–4894

    Article  PubMed  CAS  Google Scholar 

  23. Norum KR (1993) Acute myeloid leukaemia and retinoids. Eur J Clin Nutr 47:77–87

    PubMed  CAS  Google Scholar 

  24. Lam HS, Chow CM, Poon WT, Lai CK, Yeung WL, Hui J, Chan AY, Ng PC (2006) Risk of vitamin A toxicity from candy-like chewable vitamin supplements for children. Pediatrics 118:820–824

    Article  PubMed  Google Scholar 

  25. Lowry OH, Rosebrough AL, Randal RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  26. Draper HH, Hadley M (1990) Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol 186:421–431

    PubMed  CAS  Google Scholar 

  27. Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, Ahn BW, Shaltiel S, Stadman ER (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478

    Article  PubMed  CAS  Google Scholar 

  28. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  PubMed  CAS  Google Scholar 

  29. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    PubMed  CAS  Google Scholar 

  30. Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247:3170–3175

    PubMed  CAS  Google Scholar 

  31. Flohé L, Günzler WA (1984) Assays of glutathione peroxidase. Methods Enzymol 105:114–121

    PubMed  Google Scholar 

  32. Hirsch EC (1992) Why are nigral catecholaminergic neurons more vulnerable than others in Parkinson’s disease. Ann Neurol 32:S88–S93

    Article  PubMed  CAS  Google Scholar 

  33. Lotharius J, Brundin P (2002) Pathogenesis of Parkinson’s disease: dopamine, vesicles and α-synuclein. Nat Rev Neurosci 3:932–942

    Article  PubMed  CAS  Google Scholar 

  34. Graham DG (1978) Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones. Mol Pharmacol 14:633–643

    PubMed  CAS  Google Scholar 

  35. Dawson TM, Dawson VL (2003) Molecular pathways of neurodegeneration in Parkinson’s disease. Science 302:819–822

    Article  PubMed  CAS  Google Scholar 

  36. Goetz ME, Gerlach M (2004) Formation of radicals. In: Herdegen T, Delgado-Garcia J (eds) Brain damage and repair. Kluwer, London, pp 135–164

    Chapter  Google Scholar 

  37. Mattson MP, Magnus T (2006) Ageing and neuronal vulnerability. Nat Rev Neurosci 7:278–294

    Article  PubMed  CAS  Google Scholar 

  38. Fang YZ, Yang S, Wu G (2002) Free radicals, antioxidants, and nutrition. Nutrition 18:872–879

    Article  PubMed  CAS  Google Scholar 

  39. Hathcock JN, Hattan DG, Jenkins MY, McDonald JT, Sundaresan PR, Wilkening VL (1990) Evaluation of vitamin A toxicity. Am J Clin Nutr 52:183–202

    PubMed  CAS  Google Scholar 

  40. Napoli JL (1999) Interactions of retinoids binding proteins and enzymes in retinoids metabolism. Biochim Biophys Acta 1440:139–162

    PubMed  CAS  Google Scholar 

  41. Frame B, Jackson CE, Reynolds WA, Umphrey JE (1974) Hypercalcemia and skeletal effects in chronic hypervitaminosis A. Ann Intern Med 80:44–48

    PubMed  CAS  Google Scholar 

  42. Ellis JK, Russel RM, Makrauer FL, Schaefer EJ (1986) Increased risk for vitamin A toxicity in severe hypertriglyceridemia. Ann Intern Med 105:877–879

    PubMed  CAS  Google Scholar 

  43. Croquet V, Pilette C, Lespine A (2000) Hepatic hypervitaminosis A: importance of retinyl ester level determination. Eur J Gastroenterol Hepatol 12:361–364

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants of CNPq, FAPERGS, and PROPESQ-UFRGS. M. R. de Oliveira and R. B. Silvestrin are recipients of a CNPq fellowship. T. Mello e Souza was supported by PROFIX (CNPq, Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Roberto de Oliveira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Oliveira, M.R., Silvestrin, R.B., Mello e Souza, T. et al. Therapeutic Vitamin A Doses Increase the Levels of Markers of Oxidative Insult in Substantia Nigra and Decrease Locomotory and Exploratory Activity in Rats after Acute and Chronic Supplementation. Neurochem Res 33, 378–383 (2008). https://doi.org/10.1007/s11064-007-9438-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-007-9438-2

Keywords

Navigation