Skip to main content
Log in

A Weakly Connected Memristive Neural Network for Associative Memory

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

In this paper, we propose a star-like weakly connected memristive neural network which is organized in such a way that each cell only interacts with the central cells. By using the describing function method and Malkin’s theorem the phase deviation of this dynamical network is obtained. And then, under the Hebbian learning rule the phase deviation is designed as a desired model for associative memory. Moreover, we take the store and recall of digital images as an example to demonstrate the performance of associative memory. The main contribution of this paper is supply a useful mechanism which the new potential circuit element memristor can be used to realize the associative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chua LO (1971) Memristor-the missing circuit element. IEEE Trans Circuits Theory CT–18(5): 507–511

    Google Scholar 

  2. Strukov DB, Snider GS, Stewart DR, Williams RS (2008) The missing memristor found. Nature 453: 80–83

    Article  Google Scholar 

  3. Itoh M, Chua LO (2009) Memristor cellular automata and memristor discrete-time cellular neural networks. Int J Bifurcation Chaos 19:3605–3656

    Article  MATH  MathSciNet  Google Scholar 

  4. Merrikh-Bayat F, Shouraki SB (2011) Programming of memristor crossbars by using genetic algorithm. Procedia Comput 3:232–237

    Article  Google Scholar 

  5. Corinto F, Ascoli A, Gilli M (2011) Nonlinear dynamics of memristor oscillators. IEEE Trans Circuits Theory I 58:1323–1336. doi:10.1109/TCSI.2097731

    Article  MathSciNet  Google Scholar 

  6. Peshin YV, Ventra MD (2008) Spin memristive systems: spinmemory effects in semiconductor spintronics. Phys Rev B 78(11):1–4

    Google Scholar 

  7. Xia Q, Robinett W, Cumbie MW, Banerjee N, Cardinali TJ, Yang JJ, Wu W, Li X, Tong WM, Strukov DB, Snider GS, Medeiros-Ribeiro G, Williams RS, Memristor B (2009) VCMOS hybrid integrated circuits for reconfigurable logic. Nano Lett 9(10):3640–3645. doi:10.1021/nl901874j

    Article  Google Scholar 

  8. Borghettil J, Snider GS, Kuekes PJ, Yang JJ, Stewart DR, Williams RS (2010) Memristive switches enable stateful logic operations via material implication. Nat Lett 464(8):873–876

    Article  Google Scholar 

  9. Yang JJ, Pichkett MD, Li X, Ohlberg DAA, Stewart DR, Williams RS (2008) Memristive switching mechanism foe metal/oxide/metal nanodevices. Nat Nanotechnol 3(7):429–433

    Article  Google Scholar 

  10. Itoh M, Chua LO (2008) Memristor oscillators. Int J Bifurcation Chaos 18:3183–3206

    Article  MATH  MathSciNet  Google Scholar 

  11. Hu J, Wang J (2010) Global uniform asymptotic stability of memristor-based recurrent neural networks with time delays, in 2010. In: International joint conference on neural networks, IJCNN2010. Spain, Barcelona

  12. Zeng ZG, Wang J (2008) Design and analysis of high-capacity associative memories based on a class of discrete-time recurrent neural networks. IEEE Trans Syst Man Cybern Part B 38(6):1525–1536

    Article  Google Scholar 

  13. Zeng ZG, Huang DS, Wang ZF (2008) Pattern memory analysis based on stability theory of cellular neural networks. Appl Math Model 32(1):112–121

    Article  MATH  Google Scholar 

  14. Zeng ZG, Wang J (2007) Analysis and design of associative memories based on recurrent neural networks with linear saturation activation functions and time-varying delays. Neural Comput 19(8):2149–2182

    Article  MATH  MathSciNet  Google Scholar 

  15. Zeng ZG, Huang DS, Wang ZF (2005) Global stability of a general class of discrete-time recurrent neural networks. Neural Process Lett 22(1):33–47

    Article  Google Scholar 

  16. Zeng ZG, Huang DS, Wang ZF (2004) Attractability and location of equilibrium point of cellular neural networks with time-varying delays. Int J Neural Syst 14(5):337–345

    Article  Google Scholar 

  17. Li HQ, Liao XF, Huang TW (2013). Second-order dynamic consensus of multi-agent systems with arbitrarily fast switching topologies. IEEE Trans Syst Man Cybern. doi:10.1109/TSMC.2013.2242466

  18. Li HQ, Liao XF, Liao RJ (2012) A unified approach to chaos suppressing and inducing in a periodically forced family of nonlinear oscillators. IEEE Trans Circuits Syst I 59(4):784–795

    Article  MathSciNet  Google Scholar 

  19. He X, Li CD, Huang T, Li CJ (2013) Codimension two bifurcation in a delayed neural network with unidirectional coupling. Nonlinear Anal 14(2):1191–1202

    Article  MATH  MathSciNet  Google Scholar 

  20. He X, Li CD, Huang T, Li CJ (2013) Bogdanov-Takens singularity in tri-neuron network with time delay. IEEE Trans Neural Netw Learning Syst. doi:10.1109/TNNLS.2013.2238681

  21. Dong T, Liao XF (2012) Dynamics of congestion control in wireless access networks. Nonlinear Anal Ser B 48:123–132

    Google Scholar 

  22. Dong T, Liao XF (2013) Bogdanov-Takens bifurcation in a tri-neuron BAM neural network model with multiple delays. Nonlinear Dyn 71:583–595

    Article  MATH  MathSciNet  Google Scholar 

  23. Wang HW, Song QK (2010) State estimation for neural networks with mixed interval time-varying delays. Neurocomputing 73(7):1281–1288

    Article  Google Scholar 

  24. Wang HW, Song QK, Duan C (2010) LMI criteria on exponential stability of BAM neural networks with both time-varying delays and general activation functions. Math Comput Simul 81(4):837–850

    Article  MATH  MathSciNet  Google Scholar 

  25. Itoh M, Chua LO (2004) Star cellular neural networks for associative memory and dynamic memory. Int J Bifurcation Chaos 14(5):1725–1772

    Article  MATH  MathSciNet  Google Scholar 

  26. Hoppensteadt FC, Izhikevich M (2000) Pattern recognition via synchronization in phase-locked loop neural networks. IEEE Trans Neural Netw 11(3):734–738

    Article  Google Scholar 

  27. Hoppensteadt FC, Izhikevich EM (1999) Oscillatory neurocomputers with dynamic connectivity. Phys Rev Lett 82(14):2983–2986

    Article  Google Scholar 

  28. Hoppensteadt FC, Izhikevitch EM (1997) Weakly connected neural networks. Springer, New York

    Book  Google Scholar 

  29. Gilli M, Bonnin M, Corinto F (2005) On global dynamic behavior of weakly connected oscillatory networks. Int J Bifurcation Chaos 15:1337–1393

    Article  MathSciNet  Google Scholar 

  30. Corinto F, Bonnin M, Gilli M (2007) Weakly connected oscillatory networks for pattern recognition via associative memory and dynamic memories. Int J Bifurcation Chaos

  31. Genesio R, Tesi A (1993) Distortion control of chaotic systems: the Chua’s circuit. J Circuits Syst Comput 3:151–171

    Article  MathSciNet  Google Scholar 

  32. Aoyaagi T (1995) Networks or neural oscillators for retrieving phase information. Phys Rev Lett 74: 4075–4078

    Google Scholar 

Download references

Acknowledgments

This publication was made possible by NPRP grant # NPRP 4-1162-1-181 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors. This work was also supported by Natural Science Foundation of China (grant no: 61374078).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuandong Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Li, C., Huang, T. et al. A Weakly Connected Memristive Neural Network for Associative Memory. Neural Process Lett 40, 275–288 (2014). https://doi.org/10.1007/s11063-013-9328-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-013-9328-3

Keywords

Navigation