Skip to main content

Advertisement

Log in

Changes in PlGF and MET-HGF expressions in paired initial and recurrent glioblastoma

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Angiogenesis is one of the key features of glioblastoma (GB). However, the use of anti-angiogenic therapies directed against vascular endothelial growth factor (VEGF) is limited by primary or acquired resistance. MET/HGF and PlGF signaling are involved in potential alternative escape mechanisms to VEGF pathway. Our objective was to explore the potential changes of MET/HGF and PlGF expression, comparing initial diagnosis and recurrence after radiotherapy-temozolomide (RT/TMZ). Paired frozen tumors from both initial and recurrent surgery after radio-chemotherapy were available for 28 patients. RNA expressions of PlGF, MET, and HGF genes were analyzed by RT-qPCR. PlGF expression significantly decreased at recurrence (p = 0.021), and expression of MET showed a significant increase (p = 0.011) at recurrence. RNA expressions of MET and HGF significantly correlated both at baseline and recurrence (baseline: p = 0.005; recurrence: p = 0.019). Evolutive profile (increasing versus decreasing expression at recurrence) of MET was associated with PFS (p = 0.002) and OS (p = 0.022) at recurrence, while the evolutive profile of HGF was associated with PFS at relapse (p = 0.049). Recurrence of GB after chemo-radiation could be associated with a variation in PlGF and MET expression. These results contribute to suggest a modification of the GB angiogenic process between initial diagnosis and recurrence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996. doi:10.1056/NEJMoa043330

    Article  CAS  PubMed  Google Scholar 

  2. Plate KH, Breier G, Weich HA, Risau W (1992) Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 359:845–848. doi:10.1038/359845a0

    Article  CAS  PubMed  Google Scholar 

  3. Carmeliet P, Moons L, Luttun A et al (2001) Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med 7:575–583. doi:10.1038/87904

    Article  CAS  PubMed  Google Scholar 

  4. Fischer C, Mazzone M, Jonckx B, Carmeliet P (2008) FLT1 and its ligands VEGFB and PlGF: drug targets for anti-angiogenic therapy? Nat Rev Cancer 8:942–956. doi:10.1038/nrc2524

    Article  CAS  PubMed  Google Scholar 

  5. Schneider K, Weyerbrock A, Doostkam S et al (2015) Lack of evidence for PlGF mediating the tumor resistance after anti-angiogenic therapy in malignant gliomas. J Neurooncol 121:269–278. doi:10.1007/s11060-014-1647-3

    Article  CAS  PubMed  Google Scholar 

  6. Jahangiri A, De Lay M, Miller LM et al (2013) Gene expression profile identifies tyrosine kinase c-Met as a targetable mediator of antiangiogenic therapy resistance. Clin Cancer Res 19:1773–1783. doi:10.1158/1078-0432.CCR-12-1281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Koochekpour S, Jeffers M, Rulong S et al (1997) Met and hepatocyte growth factor/scatter factor expression in human gliomas. Cancer Res 57:5391–5398

    CAS  PubMed  Google Scholar 

  8. Xie C-R, Sun H, Wang F-Q et al (2015) Integrated analysis of gene expression and DNA methylation changes induced by hepatocyte growth factor in human hepatocytes. Mol Med Rep 12:4250–4258. doi:10.3892/mmr.2015.3974

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Siddique AN, Nunna S, Rajavelu A et al (2013) Targeted methylation and gene silencing of VEGF-A in human cells by using a designed Dnmt3a-Dnmt3L single-chain fusion protein with increased DNA methylation activity. J Mol Biol 425:479–491. doi:10.1016/j.jmb.2012.11.038

    Article  CAS  PubMed  Google Scholar 

  10. Rajabi H, Tagde A, Alam M et al (2016) DNA methylation by DNMT1 and DNMT3b methyltransferases is driven by the MUC1-C oncoprotein in human carcinoma cells. Oncogene. doi:10.1038/onc.2016.180

    PubMed  Google Scholar 

  11. Tagde A, Rajabi H, Stroopinsky D et al (2016) MUC1-C induces DNA methyltransferase 1 and represses tumor suppressor genes in acute myeloid leukemia. Oncotarget. doi:10.18632/oncotarget.9777

    PubMed Central  Google Scholar 

  12. Baudino TA, McKay C, Pendeville-Samain H et al (2002) c-Myc is essential for vasculogenesis and angiogenesis during development and tumor progression. Genes Dev 16:2530–2543. doi:10.1101/gad.1024602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mezquita P, Parghi SS, Brandvold KA, Ruddell A (2005) Myc regulates VEGF production in B cells by stimulating initiation of VEGF mRNA translation. Oncogene 24:889–901. doi:10.1038/sj.onc.1208251

    Article  CAS  PubMed  Google Scholar 

  14. Bouillez A, Rajabi H, Pitroda S et al (2016) Inhibition of MUC1-C suppresses MYC expression and attenuates malignant growth in KRAS mutant lung adenocarcinomas. Cancer Res 76:1538–1548. doi:10.1158/0008-5472.CAN-15-1804

    Article  CAS  PubMed  Google Scholar 

  15. Tagde A, Rajabi H, Bouillez A et al (2016) MUC1-C drives MYC in multiple myeloma. Blood 127:2587–2597. doi:10.1182/blood-2015-07-659151

    Article  CAS  PubMed  Google Scholar 

  16. Taal W, Oosterkamp HM, Walenkamp AME et al (2014) Single-agent bevacizumab or lomustine versus a combination of bevacizumab plus lomustine in patients with recurrent glioblastoma (BELOB trial): a randomised controlled phase 2 trial. Lancet Oncol 15:943–953. doi:10.1016/S1470-2045(14)70314-6

    Article  CAS  PubMed  Google Scholar 

  17. Chinot OL, Wick W, Mason W et al (2014) Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med 370:709–722. doi:10.1056/NEJMoa1308345

    Article  CAS  PubMed  Google Scholar 

  18. de Groot JF, Lamborn KR, Chang SM et al (2011) Phase II study of aflibercept in recurrent malignant glioma: a North American brain tumor consortium study. J Clin Oncol 29:2689–2695. doi:10.1200/JCO.2010.34.1636

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wen PY, Schiff D, Cloughesy TF et al (2011) A phase II study evaluating the efficacy and safety of AMG 102 (rilotumumab) in patients with recurrent glioblastoma. Neuro-Oncology 13:437–446. doi:10.1093/neuonc/noq198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lassen U, Chinot OL, McBain C et al (2015) Phase 1 dose-escalation study of the antiplacental growth factor monoclonal antibody RO5323441 combined with bevacizumab in patients with recurrent glioblastoma. Neuro-Oncology 17:1007–1015. doi:10.1093/neuonc/nov019

    Article  PubMed  Google Scholar 

  21. Tabouret E, Cauvin C, Fuentes S et al (2013) Reassessment of scoring systems and prognostic factors for metastatic spinal cord compression. Spine J. doi:10.1016/j.spinee.2013.06.036

    PubMed  Google Scholar 

  22. Louis DN, Ohgaki H, Wiestler OD et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109. doi:10.1007/s00401-007-0243-4

    Article  PubMed  PubMed Central  Google Scholar 

  23. Figarella-Branger D, Mokhtari K, Dehais C et al (2014) Mitotic index, microvascular proliferation, and necrosis define 3 groups of 1p/19q codeleted anaplastic oligodendrogliomas associated with different genomic alterations. Neuro-Oncology 16:1244–1254. doi:10.1093/neuonc/nou047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wen PY, Macdonald DR, Reardon DA et al (2010) Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 28:1963–1972. doi:10.1200/JCO.2009.26.3541

    Article  PubMed  Google Scholar 

  25. Schroeder A, Mueller O, Stocker S et al (2006) The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol 7:3. doi:10.1186/1471-2199-7-3

    Article  PubMed  PubMed Central  Google Scholar 

  26. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Valente V, Teixeira SA, Neder L et al (2009) Selection of suitable housekeeping genes for expression analysis in glioblastoma using quantitative RT-PCR. BMC Mol Biol 10:17. doi:10.1186/1471-2199-10-17

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hasegawa M, Takahashi H, Rajabi H et al (2016) Functional interactions of the cystine/glutamate antiporter, CD44v and MUC1-C oncoprotein in triple-negative breast cancer cells. Oncotarget 7:11756–11769. doi:10.18632/oncotarget.7598

    PubMed  PubMed Central  Google Scholar 

  29. Takahashi H, Jin C, Rajabi H et al (2015) MUC1-C activates the TAK1 inflammatory pathway in colon cancer. Oncogene 34:5187–5197. doi:10.1038/onc.2014.442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sonawane P, Cho HE, Tagde A et al (2014) Metabolic characteristics of 13-cis-retinoic acid (isotretinoin) and anti-tumour activity of the 13-cis-retinoic acid metabolite 4-oxo-13-cis-retinoic acid in neuroblastoma. Br J Pharmacol 171:5330–5344. doi:10.1111/bph.12846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Eder JP, Vande Woude GF, Boerner SA, LoRusso PM (2009) Novel therapeutic inhibitors of the c-Met signaling pathway in cancer. Clin Cancer Res 15:2207–2214. doi:10.1158/1078-0432.CCR-08-1306

    Article  CAS  PubMed  Google Scholar 

  32. Kim KJ, Li B, Winer J et al (1993) Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 362:841–844. doi:10.1038/362841a0

    Article  CAS  PubMed  Google Scholar 

  33. Tabouret E, Tchoghandjian A, Denicolai E et al (2015) Recurrence of glioblastoma after radio-chemotherapy is associated with an angiogenic switch to the CXCL12-CXCR4 pathway. Oncotarget 6:11664–11675. doi:10.18632/oncotarget.3256

    Article  PubMed  PubMed Central  Google Scholar 

  34. Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473:298–307. doi:10.1038/nature10144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Awad AJ, Burns TC, Zhang Y, Abounader R (2014) Targeting MET for glioma therapy. Neurosurg Focus 37:E10. doi:10.3171/2014.9.FOCUS14520

    Article  PubMed  Google Scholar 

  36. Kong D-S, Song S-Y, Kim D-H et al (2009) Prognostic significance of c-Met expression in glioblastomas. Cancer 115:140–148. doi:10.1002/cncr.23972

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

SIRIC Grant: INCa-DGOS-Inserm 6038, ARTC-Sud, APHM Tumor Bank (authorization number AC-2013–1786).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emeline Tabouret.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabouret, E., Denicolai, E., Delfino, C. et al. Changes in PlGF and MET-HGF expressions in paired initial and recurrent glioblastoma. J Neurooncol 130, 431–437 (2016). https://doi.org/10.1007/s11060-016-2251-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-016-2251-5

Keywords

Navigation