Skip to main content
Log in

Apparent diffusion coefficient of intracranial germ cell tumors

  • Clinical Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

The role of diffusion weighted imaging and apparent diffusion coefficient in intracranial germ cell tumors has not been fully elucidated. The aim of this study was to evaluate whether the ADC correlates with the histologic subtypes of germ cell tumors. We also aimed to investigate whether the ADC values can predict treatment response. The authors retrospectively analyzed the ADC values of the enhancing and solid regions of germ cell tumors. The absolute ADC values and the normalized ADC values were compared among different histologic diagnoses. The ADC values before and after the first course of chemotherapy were also compared between the different prognostic groups. Ten patients were included in the study. The median age at diagnosis was 9.3 years (range 5.3–13.8 years). There were four patients with germinoma and six patients with nongerminomatous germ cell tumor (NGGCT) including five mixed germ cell tumors and one immature teratoma. The mean absolute and normalized ADC values (×10−3 mm2/s) were significantly lower in germinomas [0.835 ± 0.065 (standard deviation) and 1.11 ± 0.096, respectively] than in NGGCTs (1.271 ± 0.145 and 1.703 ± 0.223, respectively) (p = 0.01). The ADC values before and after the first course of chemotherapy were available in four patients. The ADC value after the first chemotherapy had a tendency to increase more in patients who eventually demonstrated complete response with chemotherapy than in patients who required second-look surgery. Assessment of the ADC values of germ cell tumors is considered to facilitate differentiation of histological subtypes of germ cell tumors. Evaluation of the ADC may also be useful for predicting treatment response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cho KT, Wang KC, Kim SK et al (2002) Pediatric brain tumors: statistics of SNUH, Korea (1959–2000). Childs Nerv Syst 18:30–37

    Article  PubMed  Google Scholar 

  2. Dearnaley DP, A’Hern RP, Whittaker S et al (1990) Pineal and CNS germ cell tumors: royal Marsden Hospital experience 1962–1987. Int J Radiat Oncol Biol Phys 18:773–781

    Article  CAS  PubMed  Google Scholar 

  3. Matsutani M, Sano K, Takakura K et al (1997) Primary intracranial germ cell tumors: a clinical analysis of 153 histologically verified cases. J Neurosurg 86:446–455

    Article  CAS  PubMed  Google Scholar 

  4. Weiner H, Finlay J (1999) Surgery in the management of primary intracranial germ cell tumors. Childs Nerv Syst 177:1–4

    Google Scholar 

  5. Calaminus G, Kortmann R, Worch J et al (2013) SIOP CNS GCT 96: final report of outcome of a prospective, multinational nonrandomized trial for children and adults with intracranial germinoma, comparing craniospinal irradiation alone with chemotherapy followed by focal primary site irradiation for patients with localized disease. Neuro Oncol 15:788–796

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Carlos Chung KH, Owler BK et al (2013) Paediatric germ cell tumours of the central nervous system: results and experience from a tertiary-referral paediatric institution in Australia. J Clin Neurosci 20:514–519

    Article  CAS  PubMed  Google Scholar 

  7. Kim JW, Kim WC, Cho JH et al (2012) A multimodal approach including craniospinal irradiation improves the treatment outcome of high-risk intracranial nongerminomatous germ cell tumors. Int J Radiat Oncol Biol Phys 84:625–631

    Article  PubMed  Google Scholar 

  8. Huisman TA (2003) Diffusion-weighted imaging: basic concepts and application in cerebral stroke and head trauma. Eur Radiol 13:2283–2297

    Article  PubMed  Google Scholar 

  9. Bull JG, Saunders DE, Clark CA et al (2012) Discrimination of paediatric brain tumours using apparent diffusion coefficient histograms. Eur Radiol 22:447–457

    Article  PubMed  Google Scholar 

  10. Gauvain KM, McKinstry RC, Mukherjee P et al (2001) Evaluating pediatric brain tumor cellularity with diffusion-tensor imaging. Am J Roentgenol 177:449–454

    Article  CAS  Google Scholar 

  11. Jaremko JL, Jans LB, Coleman LT et al (2010) Value and limitations of diffusion-weighted imaging in grading and diagnosis of pediatric posterior fossa tumors. Am J Neuroradiol 31:1613–1616

    Article  CAS  PubMed  Google Scholar 

  12. Kan P, Liu JK, Hedlund G et al (2006) The role of diffusion-weighted magnetic resonance imaging in pediatric brain tumors. Childs Nerv Syst 22:1435–1439

    Article  PubMed  Google Scholar 

  13. Pillai S, Singhal A, Byrne AT et al (2011) Diffusion-weighted imaging and pathological correlation in pediatric medulloblastomas—“They are not always restricted!”. Childs Nerv Syst 27:1407–1411

    Article  PubMed  Google Scholar 

  14. Poussaint TY, Rodriguez D (2006) Advanced neuroimaging of pediatric brain tumors: mR diffusion, MR perfusion, and MR spectroscopy. Neuroimaging Clin N Am 16:169–192

    Article  PubMed  Google Scholar 

  15. Provenzale JM, Mukundan S, Barboriak DP (2006) Diffusion-weighted and perfusion MR imaging for brain tumor characterization and assessment of treatment response. Radiology 239:632–649

    Article  PubMed  Google Scholar 

  16. Rumboldt Z, Camacho DL, Lake D et al (2006) Apparent diffusion coefficients for differentiation of cerebellar tumors in children. Am J Neuroradiol 27:1362–1369

    CAS  PubMed  Google Scholar 

  17. Schneider JF, Confort-Gouny S, Viola A et al (2007) Multiparametric differentiation of posterior fossa tumors in children using diffusion-weighted imaging and short echo-time 1H-MR spectroscopy. J Magn Reson Imaging 26:1390–1398

    Article  CAS  PubMed  Google Scholar 

  18. Yamasaki F, Kurisu K, Satoh K et al (2005) Apparent diffusion coefficient of human brain tumors at MR imaging. Radiology 235:985–991

    Article  PubMed  Google Scholar 

  19. Yeom KW, Mobley BC, Lober RM et al (2013) Distinctive MRI features of pediatric medulloblastoma subtypes. AJR Am J Roentgenol 200:895–903

    Article  PubMed  Google Scholar 

  20. Hamstra DA, Chenevert TL, Moffat BA et al (2005) Evaluation of the functional diffusion map as an early biomarker of time-to-progression and overall survival in high-grade glioma. Proc Natl Acad Sci USA 102:16759–16764

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Huang CF, Chiou SY, Wu MF et al (2010) Apparent diffusion coefficients for evaluation of the response of brain tumors treated by Gamma Knife surgery. J Neurosurg 113:97–104

    Article  PubMed  Google Scholar 

  22. Li Y, Lupo JM, Polley M-Y et al (2011) Serial analysis of imaging parameters in patients with newly diagnosed glioblastoma multiforme. Neuro Oncol 13:546–557

    Article  PubMed Central  PubMed  Google Scholar 

  23. Mardor Y, Pfeffer R, Spiegelmann R et al (2003) Early detection of response to radiation therapy in patients with brain malignancies using conventional and high b-value diffusion-weighted magnetic resonance imaging. J Clin Oncol 21:1094–1100

    Article  PubMed  Google Scholar 

  24. Gutierrez Rodriguez, Manita M D et al (2013) Serial MR diffusion to predict treatment response in high-grade pediatric brain tumors: a comparison of regional and voxel-based diffusion change metrics. Neuro Oncol 15:981–989

    Article  Google Scholar 

  25. Douglas-Akinwande AC, Ying J, Momin Z et al (2009) Diffusion-weighted imaging characteristics of primary central nervous system germinoma with histopathologic correlation: a retrospective study. Acad Radiol 16:1356–1365

    Article  PubMed  Google Scholar 

  26. Hirato J, Nakazato Y (2001) Pathology of pineal region tumors. J Neurooncol 54:239–249

    Article  CAS  PubMed  Google Scholar 

  27. Sato K, Takeuchi H, Kubota T (2009) Pathology of intracranial germ cell tumors. Prog Neurol Surg 23:59–75

    Article  PubMed  Google Scholar 

  28. Kim CY, Choi JW, Lee JY et al (2011) Intracranial growing teratoma syndrome: clinical characteristics and treatment strategy. J Neurooncol 101:109–115

    Article  PubMed  Google Scholar 

  29. Kong DS, Nam DH, Lee JI et al (2009) Intracranial growing teratoma syndrome mimicking tumor relapse: a diagnostic dilemma. J Neurosurg Pediatr 3:392–396

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

There are no conflicts of interest and there is no financial disclosure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideki Ogiwara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogiwara, H., Tsutsumi, Y., Matsuoka, K. et al. Apparent diffusion coefficient of intracranial germ cell tumors. J Neurooncol 121, 565–571 (2015). https://doi.org/10.1007/s11060-014-1668-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-014-1668-y

Keywords

Navigation