Skip to main content

Advertisement

Log in

Inverse spatial distribution of brain metastases and white matter hyperintensities in advanced lung and non-lung cancer patients

  • Clinical Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

The aim of this study was to test by means of a voxel-based approach the hypothesis that there is a different spatial distribution of brain metastases (BM) and white matter hyperintensities (WMH) and that the presence of WMH affects the location of BM in lung and non-lung cancer patients. Two-hundred consecutive cancer patients at first diagnosis of BM were included. Images were acquired using a 1.5 Tesla MRI system (Magnetom Avanto B13, Siemens, Erlangen, Germany). Axial FLAIR T2 weighted images and gadolinium-enhanced T1 weighted images were post-processed for segmentation, co-registration and analysis. Binary lesion masks were created for WMH and BM, using Volumes of Interest. Lesion probability maps were generated and the voxel-based lesion-symptom mapping approach was used to model each voxel and to calculate a non parametric statistics (Brunner–Munzel test) describing the differences between the groups. In the lung cancer group we found higher frequency of BM in WMH− than in WMH+ patients in the occipital lobe and the cerebellum. In contrast, BM were more frequent in the right frontal lobe in WMH+ than in WMH− patients. We suggest that there exists an inverse brain spatial distribution between WMH and BM. In lung cancer patients, the presence of WMH seems to shift the distribution of BM toward locations different than what it is expected based on primary tumor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Tabarés-Seisdedos R, Rubenstein JL (2013) Inverse cancer comorbidity: a serendipitous opportunity to gain insight into CNS disorders. Nat Rev Neurosci 14:293–304

    Article  PubMed  Google Scholar 

  2. Ibáñez K, Boullosa C, Tabarés-Seisdedos R, Baudot A, Valencia A (2014) Molecular evidence for the inverse comorbidity between central nervous system disorders and cancers detected by transcriptomic meta-analyses. PLoS Genet 10(2):e1004173

    Article  PubMed  PubMed Central  Google Scholar 

  3. Vernooij MW, Ikram MA, Tanghe HL et al (2007) Incidental findings on brain MRI in the general population. N Engl J Med 357(18):1821–1828

    Article  PubMed  CAS  Google Scholar 

  4. Schmidt R, Hayn M, Fazekas F, Kapeller P, Esterbauer H (1996) Magnetic resonance imaging white matter hyperintensities in clinically normal elderly individuals: correlations with plasma concentrations of naturally occurring antioxidants. Stroke 27(11):2043–2047

    Article  PubMed  CAS  Google Scholar 

  5. Longstreth WT Jr, Manolio TA, Arnold A et al (1996) Clinical correlates of white matter findings on cranial magnetic resonance imaging of 3301 elderly people: the Cardiovascular Health Study. Stroke 27(8):1274–1282

    Article  PubMed  Google Scholar 

  6. Yue NC, Arnold AM, Longstreth WT Jr et al (1997) Sulcal, ventricular, and white matter changes at MR imaging in the aging brain: data from the Cardiovascular Health Study. Radiology 202(1):33–39

    Article  PubMed  CAS  Google Scholar 

  7. Murray AD, Staff RT, Shenkin SD, Deary IJ, Starr JM, Whalley LJ (2005) Brain white matter hyperintensities: relative importance of vascular risk factors in nondemented elderly people. Radiology 237(1):251–257

    Article  PubMed  Google Scholar 

  8. de Leeuw FE, de Groot JC, Bots ML et al (2000) Carotid atherosclerosis and cerebral white matter lesions in a population based magnetic resonance imaging study. J Neurol 247:291–296

    Article  PubMed  Google Scholar 

  9. Altaf N, Morgan PS, Moody A, MacSweeney ST, Gladman JR, Auer DP (2008) Brain white matter hyperintensities are associated with carotid intraplaque hemorrhage. Radiology 248(1):202–209

    Article  PubMed  Google Scholar 

  10. Yamauchi H, Fukuyama H, Nagahama Y et al (1999) Brain arteriolosclerosis and hemodynamic disturbance may induce leukoaraiosis. Neurology 53:1833–1838

    Article  PubMed  CAS  Google Scholar 

  11. Jefferson AL, Tate DF, Poppas A et al (2007) Lower cardiac output is associated with greater white matter hyperintensities in older adults with cardiovascular disease. J Am Geriatr Soc 55:1044–1048

    Article  PubMed  PubMed Central  Google Scholar 

  12. Vogels RL, van der Flier WM, van Harten B et al (2007) Brain magnetic resonance imaging abnormalities in patients with heart failure. Eur J Heart Fail 9(10):1003–1009

    Article  PubMed  Google Scholar 

  13. Purandare N, Oude Voshaar RC, Burns A, Velupandian UM, McCollum C (2006) Paradoxical embolization: a potential cause of cerebral damage in Alzheimer’s disease? Neurol Res 28(6):679–684

    Article  PubMed  CAS  Google Scholar 

  14. Luzzi KJ, MacDonald IC, Schmidt EE et al (1998) Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. Am J Pathol 153(3):865–873

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Hwang TL, Close TP, Grego JM, Brannon WL, Gonzales F (1996) Predilection of brain metastases in grey and white matter junction and vascular border zones. Cancer 77:1551–1555

    Article  PubMed  CAS  Google Scholar 

  16. Graf AH, Buchberger W, Langmayr H, Schmid KW (1988) Site preference of metastatic tumours of the brain. Virchows Arch A Pathol Anat Histopathol 412(5):493–498

    Article  PubMed  CAS  Google Scholar 

  17. Tsukada Y, Fouad A, Pickren JW, Lane WW (1983) Central nervous system metastasis from breast carcinoma. Autopsy study. Cancer 52:2349–2354

    Article  PubMed  CAS  Google Scholar 

  18. Bender ET, Tomé WA (2011) Distribution of brain metastases: implications for non-uniform dose prescriptions. Br J Radiol 84(1003):649–658

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Quattrocchi CC, Errante Y, Gaudino C et al (2012) Spatial brain distribution of intra-axial metastatic lesions in breast and lung cancer patients. J Neurooncol 110(1):79–87

    Article  PubMed  CAS  Google Scholar 

  20. Graesslin O, Abdulkarim BS, Coutant C et al (2010) Nomogram to predict subsequent brain metastasis in patients with metastatic breast cancer. J Clin Oncol 28(12):2032–2037

    Article  PubMed  Google Scholar 

  21. Albiges L, André F, Balleyguier C, Gomez-Abuin G, Chompret A, Delaloge S (2005) Spectrum of breast cancer metastasis in BRCA1 mutation carriers: highly increased incidence of brain metastases. Ann Oncol 16(11):1846–1847

    Article  PubMed  CAS  Google Scholar 

  22. Mujoomdar A, Austin JH, Malhotra R et al (2007) Clinical predictors of metastatic disease to the brain from non-small cell lung carcinoma: primary tumor size, cell type, and lymph node metastases. Radiology 242(3):882–888

    Article  PubMed  Google Scholar 

  23. Mazzone PJ, Marchi N, Fazio V et al (2009) Small vessel ischemic disease of the brain and brain metastases in lung cancer patients. PLoS One 4(9):e7242

    Article  PubMed  PubMed Central  Google Scholar 

  24. Quattrocchi CC, Errante Y, Mallio CA, Santini D, Tonini G, Zobel BB (2013) Brain metastatic volume and white matter lesions in advanced cancer patients. J Neurooncol 113(3):451–458

    Article  PubMed  Google Scholar 

  25. Mazziotta JC, Toga AW, Evans A, Fox P, Lancaster J (1995) A probabilistic atlas of the human brain: theory and rationale for its development. The International Consortium for Brain Mapping (ICBM). Neuroimage 2(2):89–101

    Article  PubMed  CAS  Google Scholar 

  26. Rostrup E, Gouw AA, Vrenken H et al (2012) The spatial distribution of age-related white matter changes as a function of vascular risk factors-results from the LADIS study. Neuroimage 60(3):1597–1607

    Article  PubMed  CAS  Google Scholar 

  27. Fazekas F, Schmidt R, Kleinert R, Kapeller P, Roob G, Flooh E (1998) The spectrum of age-associated brain abnormalities: their measurement and histopathological correlates. J Neural Transm Suppl 53:31–39

    Article  PubMed  CAS  Google Scholar 

  28. Wen W, Sachdev P (2004) The topography of white matter hyperintensities on brain MRI in healthy 60- to 64-year-old individuals. Neuroimage 22(1):144–154

    Article  PubMed  Google Scholar 

  29. Enzinger C, Smith S, Fazekas F et al (2006) Lesion probability maps of white matter hyperintensities in elderly individuals: results of the Austrian stroke prevention study. J Neurol 253(8):1064–1070

    Article  PubMed  Google Scholar 

  30. Hengel K, Sidhu G, Choi J et al (2013) Attributes of brain metastases from breast and lung cancer. Int J Clin Oncol 18(3):396–401

    Article  PubMed  Google Scholar 

  31. Hendrikse J, Van der Grond J, Lu H et al (2004) Flow territory mapping of the cerebral arteries with regional perfusion MRI. Stroke 35:882–887

    Article  PubMed  Google Scholar 

  32. Iadecola C (1993) Regulation of the cerebral microcirculation during neural activity: is nitric oxide the missing link? TINS 16:206–215

    PubMed  CAS  Google Scholar 

  33. Gouw AA, Seewann A, Vrenken H et al (2008) Heterogeneity of white matter hyperintensities in Alzheimer’s disease: post-mortem quantitative MRI and neuropathology. Brain 131:3286–3298

    Article  PubMed  CAS  Google Scholar 

  34. Gouw AA, Seewann A, van der Flier WM et al (2011) Heterogeneity of small vessel disease: a systematic review of MRI and histopathology correlations. J Neurol Neurosurg Psychiatry 82(2):126–135

    Article  PubMed  Google Scholar 

  35. Marstrand JR, Garde E, Rostrup E et al (2002) Cerebral perfusion and cerebrovascular reactivity are reduced in white matter hyperintensities. Stroke 33(4):972–976

    Article  PubMed  CAS  Google Scholar 

  36. Lorger M, Felding-Habermann B (2010) Capturing changes in the brain microenvironment during initial steps of breast cancer brain metastasis. Am J Pathol 176(6):2958–2971

    Article  PubMed  PubMed Central  Google Scholar 

  37. Furutani K, Harada M, Mawlan M, Nishitani H (2008) Difference in enhancement between spin echo and 3-dimensional fast spoiled gradient recalled acquisition in steady state magnetic resonance imaging of brain metastasis at 3-T magnetic resonance imaging. J Comput Assist Tomogr 32(2):313–319

    Article  PubMed  Google Scholar 

Download references

Ethical Standards

The study was conducted in accordance with the declaration of Helsinki and it followed the institutional ethical committee standards for observational studies.

Conflict of interest

The authors report no financial or other conflict of interest relevant to the subject of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Cosimo Quattrocchi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 74 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quattrocchi, C.C., Errante, Y., Mallio, C.A. et al. Inverse spatial distribution of brain metastases and white matter hyperintensities in advanced lung and non-lung cancer patients. J Neurooncol 120, 321–330 (2014). https://doi.org/10.1007/s11060-014-1554-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-014-1554-7

Keywords

Navigation