Skip to main content

Advertisement

Log in

Versican isoform V1 regulates proliferation and migration in high-grade gliomas

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Versican is a large chondroitin sulphate proteoglycan produced by several tumor cell types, including high-grade gliomas. Increased expression of distinct versican isoforms in the extracellular matrix plays a role in tumor cell growth, adhesion and migration. We have recently shown that transforming growth factor (TGF-beta)2, an important modulator of glioma invasion, interacts with versican isoforms V0/V1 during malignant progression of glioma in vitro. However, the distinct subtype of versican that modulates these effects could not be specified. Here, we show that transient down-regulation of V1 by siRNA leads to a significant reduction of proliferation and migration in glioblastoma cell lines and glioblastoma progenitor cells, whereas tumor cell attachment stays unaffected. We conclude that V1 plays a predominant role in modulating central pathophysiological mechanisms as proliferation and migration in glioblastoma. Considering that TGF-beta is a master regulator of glioma pathophysiology, and that V0/1 is induced by TGF-beta2, therapeutic regulation of V1 may induce meaningful effects on glioma cell migration not only in vitro, but also in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bellail AC, Hunter SB, Brat DJ, Tan C, Van Meir EG (2004) Microregional extracellular matrix heterogeneity in brain modulates glioma cell invasion. Int J Biochem Cell Biol 36:1046–1069

    Article  PubMed  CAS  Google Scholar 

  2. VanMeter TE, Rooprai HK, Kibble MM, Fillmore HL, Broaddus WC, Pilkington GJ (2001) The role of matrix metalloproteinase genes in glioma invasion: co-dependent and interactive proteolysis. J Neurooncol 53:213–235

    Article  PubMed  CAS  Google Scholar 

  3. Hjelmeland MD, Hjelmeland AB, Sathornsumetee S, Reese ED, Herbstreith MH, Laping NJ, Friedman HS, Bigner DD, Wang X-F, Rich JN (2004) SB-431542, a small molecule transforming growth factor-beta-receptor antagonist, inhibits human glioma cell line proliferation and motility. Mol Cancer Ther 3:737–745

    PubMed  CAS  Google Scholar 

  4. Goldbrunner RH, Bernstein JJ, Tonn JC (1998) ECM-mediated glioma cell invasion. Microsc Res Tech 43:250–257

    Article  PubMed  CAS  Google Scholar 

  5. Kjellman C, Olofsson SP, Hansson O, Von Schantz T, Lindvall M, Nilsson I, Salford LG, Sjögren HO, Widegren B (2000) Expression of TGF-beta isoforms, TGF-beta receptors, and SMAD molecules at different stages of human glioma. Int J Cancer 89:251–258

    Article  PubMed  CAS  Google Scholar 

  6. Wick W, Naumann U, Weller M (2006) Transforming growth factor-beta: a molecular target for the future therapy of glioblastoma. Curr Pharm Des 12:341–349

    Article  PubMed  CAS  Google Scholar 

  7. Wick W, Platten M, Weller M (2001) Glioma cell invasion: regulation of metalloproteinase activity by TGF-beta. J Neurooncol 53:177–185

    Article  PubMed  CAS  Google Scholar 

  8. Kwiatkowska A, Symons M (2013) Signaling determinants of glioma cell invasion. Adv Exp Med Biol 986:121–141

    Article  PubMed  CAS  Google Scholar 

  9. Landolt RM, Vaughan L, Winterhalter KH, Zimmermann DR (1995) Versican is selectively expressed in embryonic tissues that act as barriers to neural crest cell migration and axon outgrowth. Development 121:2303–2312

    PubMed  CAS  Google Scholar 

  10. Dutt S, Kléber M, Matasci M, Sommer L, Zimmermann DR (2006) Versican V0 and V1 guide migratory neural crest cells. J Biol Chem 281:12123–12131

    Article  PubMed  CAS  Google Scholar 

  11. Ang LC, Zhang Y, Cao L, Yang BL, Young B, Kiani C, Lee V, Allan K, Yang BB (1999) Versican enhances locomotion of astrocytoma cells and reduces cell adhesion through its G1 domain. J Neuropathol Exp Neurol 58:597–605

    Article  PubMed  CAS  Google Scholar 

  12. Cattaruzza S, Schiappacassi M, Ljungberg-Rose A, Spessotto P, Perissinotto D, Mörgelin M, Mucignat MT, Colombatti A, Perris R (2002) Distribution of PG-M/versican variants in human tissues and de novo expression of isoform V3 upon endothelial cell activation, migration, and neoangiogenesis in vitro. J Biol Chem 277:47626–47635

    Article  PubMed  CAS  Google Scholar 

  13. Pukkila M, Kosunen A, Ropponen K, Virtaniemi J, Kellokoski J, Kumpulainen E, Pirinen R, Nuutinen J, Johansson R, Kosma V-M (2007) High stromal versican expression predicts unfavourable outcome in oral squamous cell carcinoma. J Clin Pathol 60:267–272

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ricciardelli C, Mayne K, Sykes PJ, Raymond WA, McCaul K, Marshall VR, Horsfall DJ (1998) Elevated levels of versican but not decorin predict disease progression in early-stage prostate cancer. Clin Cancer Res 4:963–971

    PubMed  CAS  Google Scholar 

  15. Schmalfeldt M, Bandtlow CE, Dours-Zimmermann MT, Winterhalter KH, Zimmermann DR (2000) Brain derived versican V2 is a potent inhibitor of axonal growth. J Cell Sci 113(Pt 5):807–816

    PubMed  CAS  Google Scholar 

  16. Sheng W, Wang G, Wang Y et al (2005) The roles of versican V1 and V2 isoforms in cell proliferation and apoptosis. Mol Biol Cell 16:1330–1340

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Wu Y, Chen L, Cao L, Sheng W, Yang BB (2004) Overexpression of the C-terminal PG-M/versican domain impairs growth of tumor cells by intervening in the interaction between epidermal growth factor receptor and beta1-integrin. J Cell Sci 117:2227–2237

    Article  PubMed  CAS  Google Scholar 

  18. Ricciardelli C, Sakko AJ, Ween MP, Russell DL, Horsfall DJ (2009) The biological role and regulation of versican levels in cancer. Cancer Metastasis Rev 28:233–245

    Article  PubMed  Google Scholar 

  19. Arslan F, Doerfelt A, Bogdahn U, Hau P (2006) The regulatory role of transforming growth factor-β2 in malignant glioma invasion by modulation of extracellular matrix. AACR Meet Abstr 2006:773

    Google Scholar 

  20. Kähäri VM, Larjava H, Uitto J (1991) Differential regulation of extracellular matrix proteoglycan (PG) gene expression. Transforming growth factor-beta 1 up-regulates biglycan (PGI), and versican (large fibroblast PG) but down-regulates decorin (PGII) mRNA levels in human fibroblasts in cult. J Biol Chem 266:10608–10615

    PubMed  Google Scholar 

  21. Schönherr E, Järveläinen HT, Sandell LJ, Wight TN (1991) Effects of platelet-derived growth factor and transforming growth factor-beta 1 on the synthesis of a large versican-like chondroitin sulfate proteoglycan by arterial smooth muscle cells. J Biol Chem 266:17640–17647

    PubMed  Google Scholar 

  22. Robbins JR, Evanko SP, Vogel KG (1997) Mechanical loading and TGF-beta regulate proteoglycan synthesis in tendon. Arch Biochem Biophys 342:203–211

    Article  PubMed  CAS  Google Scholar 

  23. Venkatesan N, Roughley PJ, Ludwig MS (2002) Proteoglycan expression in bleomycin lung fibroblasts: role of transforming growth factor-beta(1) and interferon-gamma. Am J Physiol Lung Cell Mol Physiol 283:L806–L814

    PubMed  CAS  Google Scholar 

  24. Zhao X, Russell P (2005) Versican splice variants in human trabecular meshwork and ciliary muscle. Mol Vis 11:603–608

    PubMed  CAS  Google Scholar 

  25. Wu Y, Sheng W, Chen L, Dong H, Lee V, Lu F, Wong CS, Lu W-Y, Yang BB (2004) Versican V1 isoform induces neuronal differentiation and promotes neurite outgrowth. Mol Biol Cell 15:2093–2104

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Jachimczak P, Hessdörfer B, Fabel-Schulte K, Wismeth C, Brysch W, Schlingensiepen KH, Bauer A, Blesch A, Bogdahn U (1996) Transforming growth factor-beta-mediated autocrine growth regulation of gliomas as detected with phosphorothioate antisense oligonucleotides. Int J Cancer 65:332–337

    Article  PubMed  CAS  Google Scholar 

  27. Elbashir SM, Lendeckel W, Tuschl T (2001) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15:188–200

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Cooper LAD, Kong J, Wang F, Kurc T, Moreno CS, Brat DJ, Saltz JH (2011) Morphological signatures and genomic correlates in glioblastoma. Proc IEEE Int Symp Biomed Imaging 30:1624–1627

    Google Scholar 

  29. Verhaak RGW, Hoadley KA, Purdom E et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:98–110

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Touab M, Villena J, Barranco C, Arumí-Uría M, Bassols A (2002) Versican is differentially expressed in human melanoma and may play a role in tumor development. Am J Pathol 160:549–557

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Sakko AJ, Ricciardelli C, Mayne K, Suwiwat S, LeBaron RG, Marshall VR, Tilley WD, Horsfall DJ (2003) Modulation of prostate cancer cell attachment to matrix by versican. Cancer Res 63:4786–4791

    PubMed  CAS  Google Scholar 

  32. Yamagata M, Kimata K (1994) Repression of a malignant cell-substratum adhesion phenotype by inhibiting the production of the anti-adhesive proteoglycan PG-M/versican. J Cell Sci 107(Pt 9):2581–2590

    PubMed  CAS  Google Scholar 

  33. Ulrich TA, de Juan Pardo EM, Kumar S (2009) The mechanical rigidity of the extracellular matrix regulates the structure, motility, and proliferation of glioma cells. Cancer Res 69:4167–4174

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Yang W, Yee AJ (2013) Versican V2 isoform enhances angiogenesis by regulating endothelial cell activities and fibronectin expression. FEBS Lett 587:185–192

    Article  PubMed  CAS  Google Scholar 

  35. Dours-Zimmermann MT, Zimmermann DR (1994) A novel glycosaminoglycan attachment domain identified in two alternative splice variants of human versican. J Biol Chem 269:32992–32998

    PubMed  CAS  Google Scholar 

  36. Seyfried NT, McVey GF, Almond A, Mahoney DJ, Dudhia J, Day AJ (2005) Expression and purification of functionally active hyaluronan-binding domains from human cartilage link protein, aggrecan and versican: formation of ternary complexes with defined hyaluronan oligosaccharides. J Biol Chem 280:5435–5448

    Article  PubMed  CAS  Google Scholar 

  37. Ricciardelli C, Russell DL, Ween MP, Mayne K, Suwiwat S, Byers S, Marshall VR, Tilley WD, Horsfall DJ (2007) Formation of hyaluronan- and versican-rich pericellular matrix by prostate cancer cells promotes cell motility. J Biol Chem 282:10814–10825

    Article  PubMed  CAS  Google Scholar 

  38. Miquel-Serra L, Serra M, Hernández D, Domenzain C, Docampo MJ, Rabanal RM, de Torres I, Wight TN, Fabra A, Bassols A (2006) V3 versican isoform expression has a dual role in human melanoma tumor growth and metastasis. Lab Invest 86:889–901

    Article  PubMed  CAS  Google Scholar 

  39. Asher RA, Morgenstern DA, Shearer MC, Adcock KH, Pesheva P, Fawcett JW (2002) Versican is upregulated in CNS injury and is a product of oligodendrocyte lineage cells. J Neurosci 22:2225–2236

    PubMed  CAS  Google Scholar 

  40. Milev P, Maurel P, Chiba A, Mevissen M, Popp S, Yamaguchi Y, Margolis RK, Margolis RU (1998) Differential regulation of expression of hyaluronan-binding proteoglycans in developing brain: aggrecan, versican, neurocan, and brevican. Biochem Biophys Res Commun 247:207–212

    Article  PubMed  CAS  Google Scholar 

  41. Schmalfeldt M, Dours-Zimmermann MT, Winterhalter KH, Zimmermann DR (1998) Versican V2 is a major extracellular matrix component of the mature bovine brain. J Biol Chem 273:15758–15764

    Article  PubMed  CAS  Google Scholar 

  42. Paulus W, Baur I, Dours-Zimmermann MT, Zimmermann DR (1996) Differential expression of versican isoforms in brain tumors. J Neuropathol Exp Neurol 55:528–533

    Article  PubMed  CAS  Google Scholar 

  43. Cattaruzza S, Schiappacassi M, Kimata K, Colombatti A, Perris R (2004) The globular domains of PG-M/versican modulate the proliferation-apoptosis equilibrium and invasive capabilities of tumor cells. FASEB J 18:779–781

    PubMed  CAS  Google Scholar 

  44. Zheng P-S, Wen J, Ang LC, Sheng W, Viloria-Petit A, Wang Y, Wu Y, Kerbel RS, Yang BB (2004) Versican/PG-M G3 domain promotes tumor growth and angiogenesis. FASEB J 18:754–756

    PubMed  CAS  Google Scholar 

  45. Wu YJ, La Pierre DP, Wu J, Yee AJ, Yang BB (2005) The interaction of versican with its binding partners. Cell Res 15:483–494

    Article  PubMed  CAS  Google Scholar 

  46. Zhang Y, Cao L, Yang BL, Yang BB (1998) The G3 domain of versican enhances cell proliferation via epidermial growth factor-like motifs. J Biol Chem 273:21342–21351

    Article  PubMed  CAS  Google Scholar 

  47. Wu Y, Chen L, Zheng P-S, Yang BB (2002) beta 1-Integrin-mediated glioma cell adhesion and free radical-induced apoptosis are regulated by binding to a C-terminal domain of PG-M/versican. J Biol Chem 277:12294–12301

    Article  PubMed  CAS  Google Scholar 

  48. Hernández D, Miquel-Serra L, Docampo MJ, Marco-Ramell A, Bassols A (2011) Role of versican V0/V1 and CD44 in the regulation of human melanoma cell behavior. Int J Mol Med 27:269–275

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank Birgit Jachnik and Ina Weig-Meckl for excellent technical assistance.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Hau.

Additional information

Arabel Vollmann-Zwerenz and Peter Hau have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

A specific siRNA against V3 was constructed that yielded a significant effect in regulating V3 as compared to untreated, scrambled siRNA and lipofectamine controls (a). No off-target effects of siRNA V3 on V1 or V3 mRNA were observed (b). *p < 0.05

Supplementary Fig. 2

Results of siV1 were verified in HTZ-349, A172, and U87MG cell lines for proliferation and migration. Proliferation is decreased notably (a) with a predominant effect in HTZ-349, whereas scratch (b) and Boyden chamber assays (c) yielded similar effects in all three cell lines. Of note, U87 is V2-negative, excluding an effect of V2

Supplementary Fig. 3

Results of siV1 were verified in HTZ-349, A172, and U87MG cell lines for proliferation and migration. Proliferation is decreased notably (a) with a predominant effect in HTZ-349, whereas scratch (b) and Boyden chamber assays (c) yielded similar effects in all three cell lines. Of note, U87 is V2-negative, excluding an effect of V2

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Onken, J., Moeckel, S., Leukel, P. et al. Versican isoform V1 regulates proliferation and migration in high-grade gliomas. J Neurooncol 120, 73–83 (2014). https://doi.org/10.1007/s11060-014-1545-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-014-1545-8

Keywords

Navigation