Skip to main content
Log in

Neuroradiological assessment of newly diagnosed glioblastoma

  • Invited Manuscript
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Landis JR, Kock GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174

    Article  PubMed  CAS  Google Scholar 

  2. Walters BC (1998) Clinical practice parameter development in neurosurgery. In: Bean J (ed) Neurosurgery in transition: the socioeconomic transformation of neurological surgery. Williams and Wilkins, Baltimore, pp 99–111

    Google Scholar 

  3. Amundsen P, Dugstad G, Syvertsen AH (1978) The reliability of computer tomography of the diagnosis and differential diagnosis of meningiomas, gliomas and brain metastases. Acta Neurochir 41:177–190

    Article  CAS  Google Scholar 

  4. Dadparvar S, Krishna L, Miyamoto C et al (1994) Indium-111-labeled anti-EGFr-425 scintigraphy in the detection of malignant gliomas. Cancer 73:884–889

    Article  PubMed  CAS  Google Scholar 

  5. Prat-Acin R, Diaz-Vicente FJ, Banzo-Marraco J et al (1997) Histological prediction of cerebral tumors using SPECT with 201Tl. Rev Neurol 25:1168–1170

    PubMed  CAS  Google Scholar 

  6. Oriuchi N, Tamura M, Shibazaki T et al (1991) Evaluation of 201Tl SPECT in patients with glioma: a comparative study with histological diagnosis, clinical feature and proliferative activity. Japanese Journal of Nuclear Medicine 28:1263–1271

    PubMed  CAS  Google Scholar 

  7. Taki S, Kakuda K, Kakuma K (1999) 201Tl SPET in the differential of brain tumours. Nucl Med Commun 20:637–645

    Article  PubMed  CAS  Google Scholar 

  8. Dean BL, Drayer BP, Bird CR et al (1990) Gliomas: classification with MR imaging. Radiology 174:411–415

    PubMed  CAS  Google Scholar 

  9. Sugahara T, Korogi Y, Kochi M et al (1998) Correlation of MR imaging—determined cerebral blood volume maps with histologic and angiographic determination of vascularity of gliomas. Am J Radiol 171:1479–1486

    CAS  Google Scholar 

  10. Lev MH, Ozsunar Y, Henson JW, Rasheed AA et al (2004) Glial tumor grading and outcome prediction using dynamic spin-echo MR susceptibility mapping compared with conventional contrast-enhanced MR: confounding effect of elevated rCBV of oligodendrogliomas. Am J Neuroradiol 25:214–221

    PubMed  Google Scholar 

  11. Ketonen L (1978) Computerized tomography for diagnosis of supratentorial tumors. Acta Neurol Scand Suppl 67:153–164

    PubMed  CAS  Google Scholar 

  12. Choksey MS, Valentine A, Shawdon H et al (1989) Computed tomography in the diagnosis of malignant brain tumours: do all patients require biopsy? J Neurol Neurosurg Psychiatr 52:821–825

    PubMed  CAS  Google Scholar 

  13. Katano H, Karasawa K, Sugiyama N et al (2002) Comparison of thallium-201 uptake and retention indices for evaluation of brain lesions with SPECT. J Clin Neurosci 9:653–658

    Article  PubMed  Google Scholar 

  14. Black KL, Emerick T, Hoh C et al (1994) Thallium-201 SPECT and positron tomography equal predictors of gliomas grade and recurrence. Neurol Res 16:93–96

    PubMed  CAS  Google Scholar 

  15. Igase K, Oka Y, Ohta S et al (2002) Usefulness of thallium-201 single photon emission computed tomography to quantify the malignancy grade of brain tumors. Neurol Med Chir (Tokyo) 36:434–439

    Article  Google Scholar 

  16. Baillet G, Albuquerque L, Chen Q et al (1994) Evaluation of single-photon emission tomography imaging of supratentorial brain gliomas with technetium-99m sestamibi. Eur J Nucl Med 21:1061–1066

    Article  PubMed  CAS  Google Scholar 

  17. Sjoholm H, Elmqvist D, Rehncrona S et al (1995) SPECT imaging of gliomas with thallium-201 and technetium-99m-HMPAO. Acta Neurol Scand 91:66–70

    PubMed  CAS  Google Scholar 

  18. Reimann B, Papke K, Hoess N et al (2002) Noninvasive grading of untreated gliomas: a comparative study of MR imaging and 3-(iodine 123)-l-α-methyltyrosine SPECT. Radiology 225:567–574

    Article  Google Scholar 

  19. Debelke D, Meyerowitz C, Lapidus RL et al (1995) Optimal cutoff levels of F-18 fluorodeoxyglucose uptake in the differentiation of low-grade from high-grade brain tumors with PET. Radiology 195:47–52

    Google Scholar 

  20. Bell D, Grant R, Collie D et al (2002) How well do radiologists diagnose intracerebral tumor histology on CT? Findings from a prospective multicentre study. Br J Neurosurg 16:573–577

    PubMed  CAS  Google Scholar 

  21. Negendank WG, Sauter R, Brown TR et al (1996) Magnetic resonance spectroscopy in patients with glial tumors: a multicenter study. J Neurosurg 84:449–458

    PubMed  CAS  Google Scholar 

  22. Carapella CM, Carpinelli G, Knijn A et al (1997) Potential role of in vitro 1H magnetic resonance spectroscopy in the definition of malignancy grading of human neuroepithelial brain tumors. Acta Neurochir Suppl 68:127–132

    PubMed  CAS  Google Scholar 

  23. Tamiya T, Kinoshita K, Ono Y et al (2000) Proton magnetic resonance spectroscopy reflects cellular proliferative activity in astrocytomas. Neuroradiology 42:333–338

    Article  PubMed  CAS  Google Scholar 

  24. Howe FA, Barton SJ, Cudlip SA et al (2003) Metabolic profiles of human brain tumors using quantitative in vivo magnetic resonance 1H spectroscopy. Magn Reson Med 49:223–232

    Article  PubMed  CAS  Google Scholar 

  25. Moller-Hartmann W, Herminghaus S, Krings T et al (2002) Clinical application of proton magnetic resonance spectroscopy in the diagnosis of intracranial mass lesions. Neuroradiology 44:371–381

    Article  PubMed  CAS  Google Scholar 

  26. Lee SJ, Kim JH, Kim YM et al (2001) Perfusion MR imaging in gliomas: comparison with histologic grade. Korean J Radiol 2:1–7

    Article  PubMed  CAS  Google Scholar 

  27. Shin JH, Lee HK, Kwun BD et al (2002) Using relative cerebral blood flow and volume to evaluate the histopathologic grade of cerebral gliomas. Am J Radiol 179:783–789

    Google Scholar 

  28. Roberts HC, Roberts TPL, Bollen AW et al (2001) Correlation of microvascular permeability derived from dynamic contrast-enhanced MR imaging with histologic grad and tumor labeling index: a study in human brain tumors. Acad Radiol 8:384–391

    Article  PubMed  CAS  Google Scholar 

  29. Beppu T, Inoue T, Shibata Y et al (2003) Measurement of fractional anisotropy using diffusion tensor MRI in supratentorial astrocytic tumors. J Neuro-oncol 63:109–116

    Article  Google Scholar 

  30. Kurki T, Lundbom N, Kalimo H et al (1995) MR Classification of brain gliomas: value of magnetization transfer and conventional imaging. Magn Reson Imaging 13:501–511

    Article  PubMed  CAS  Google Scholar 

  31. Uematsu H, Maeda M, Sadato N et al (2002) Measurement of the vascularity and vascular leakage of gliomas by double-echo dynamic magnetic resonance imaging. A preliminary study. Invest Radiol 37:571–576

    Article  PubMed  Google Scholar 

  32. Murphy M, Loosemore A, Clifton AG et al (2002) The contribution of proton magnetic resonance spectroscopy (1HMRS) to clinical brain tumour diagnosis. Br J Neurosurg 16:329–334

    Article  PubMed  CAS  Google Scholar 

  33. Murphy PS, Rowland IJ, Viviers L et al (2003) Could assessment of glioma methylene lipid resonance by in vivo 1H-MRS be of clinical value? Br J Radiol 76:459–463

    Article  PubMed  CAS  Google Scholar 

  34. Isobe T, Matsumura A, Anno I et al (2002) Quantification of cerebral metabolites in gliomas patients with proton MR spectroscopy using T2 relaxation time correction. Magn Reson Imaging 20:343–349

    Article  PubMed  CAS  Google Scholar 

  35. Poptani H, Kaartinen J, Gupta RK et al (1999) Diagnostic assessment of brain tumors and non-neoplastic brain disorders in vivo using proton nuclear magnetic resonance spectroscopy and artificial neural networks. J Cancer Res Clin Oncol 125:343–349

    Article  PubMed  CAS  Google Scholar 

  36. Rutter A, Hugenholtz H, Saunders JK et al (1995) One-dimensional phosphorus-31 chemical shift imaging of human brain tumors. Invest Radiol 30:359–366

    Article  PubMed  CAS  Google Scholar 

  37. Sugahara T, Korogi Y, Kochi M (1999) Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas. J Magn Reson Imaging 9:53–60

    Article  PubMed  CAS  Google Scholar 

  38. Castillo M, Smith JK, Kwock L et al (2001) Apparent diffusion coefficients in the evaluation of high-grade cerebral gliomas. Am J Neuroradiol 22:60–64

    PubMed  CAS  Google Scholar 

  39. Lam WWM, Poon WS, Metreweli C (2002) Diffusion MR imaging in glioma: does it have any role n the pre-operation determination of grading glioma? Clin Radiol 57:219–225

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge Beverly Murphy for her expert assistance in developing a coherent literature search and Bruce Frankel, MD for his critical review and assistance in organization of the material to be presented. Additionally we wish to thank Stephen Haines, MD, Jack Rock, MD, and Tom Mikkelson, MD for their review and comments on this work. The authors also wish to express appreciation to the AANS/CNS Joint Guidelines Committee for their review, comments and suggestions. We also thank Linda Phillips for meeting organization and collection of materials and Emily Feinstein for her assistance in editing the material for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey J. Olson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukundan, S., Holder, C. & Olson, J.J. Neuroradiological assessment of newly diagnosed glioblastoma. J Neurooncol 89, 259–269 (2008). https://doi.org/10.1007/s11060-008-9616-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-008-9616-3

Keywords

Navigation